Ауэрлихт
Девушка с обнаженной грудью стоит на коленях, склонив голову на бок и шаловливо улыбаясь из-под черных локонов. Ниже пояса она задрапирована легкой газовой тканью. Кажется, что в правой руке она держит сияющий ореол, в центре которого сверкает еще более яркий свет – «кажется», так как у света нет никакого явного источника или связи с чем-либо. Это чистое свечение. Девушка опирается на стебель громадного подсолнуха, и ее окружает буйная поросль из побегов других растений. На переднем плане изображения – обычный газовый уличный фонарь. Идея картины становится понятна. Изображенная здесь девственница обещает нам новый свет, подобный свету солнца, который озарит весь мир.
Здесь описан плакат Джованни Маталони 1895 г., рекламировавший усовершенствованное газовое освещение римской компании «Бреветто Ауэр» (guardarsi dalli contrafazzioni – «опасайтесь подделок»). Это было одно из сотен подобных изображений, появившихся в конце XIX века в городах Европы и Америки. Цветные плакаты в рекламе появились незадолго до того и были самой последней модой. Особенно же гналась за популярностью у потребителя в те годы быстро разраставшаяся отрасль промышленности, которая занималась выпуском приборов домашнего освещения и в которой газ и электричество постоянно пытались обогнать друг друга с помощью различных новшеств.
Открытие, благодаря которому газовому освещению удалось в самом конце XIX века сохранить на определенное время свое первенство в гонке с новомодным электричеством, было сделано Карлом Ауэром, позднее бароном фон Вельсбахом, венцем, получившим образование в Гейдельберге у Роберта Бунзена, на протяжении многих лет являвшегося главным гуру всех европейских химиков. Прибыв в Гейдельберг в 1880 г., Ауэр продемонстрировал великому химику свою довольно скромную коллекцию редкоземельных минералов, и Бунзен сразу же усадил его за анализ образцов, со смехом отмахнувшись от протестов Ауэра, что материалов для такого анализа у него недостаточно. Эти исследования и дали основное направление его дальнейшей деятельности. На редкоземельных элементах со временем он нажил целое состояние. Счастливым годом для Ауэра стал 1885 г., когда он уже находился в Вене. В том году он сумел разделить гипотетический, но реально не существовавший элемент дидимий на два настоящих элемента, которые получили названия празеодим и неодим. Их соединения зеленого и розового цветов сразу нашли себе применение в керамике и в производстве цветных защитных стекол.
Однако Ауэр не мог удовольствоваться простым добавлением еще двух элементов в список редкоземельных. В свои гейдельбергские дни он восхищался прославленной бунзеновской горелкой с пламенем, которое можно было настраивать на разную степень горения. И он заметил, что при сильном огне горелки его редкоземельные минералы ярко светились собственным светом. Он продолжил исследовать этот феномен, используя различные сочетания окислов металлов. На тот момент было уже хорошо известно, что, если к пламени поднести кусочек извести (окись кальция), возникнет свечение, известное под названием «друммондов свет». Ауэр использовал в своих экспериментах окислы магния, бериллия, которые близки по характеристикам к извести, а также окислы редкоземельных элементов и ряда других.
К середине XIX столетия газовое освещение уже завоевало улицы городов и дома их жителей, но качество газового света было невелико и полностью зависело от смеси горевших углеводородов. Даже свечи и масляные лампы давали более яркий свет, чем газ, но только газ можно было подавать непрерывно в течение достаточно долгого времени. Ауэр исходил из того, что, если в лампу поместить окислы редкоземельных элементов рядом с газовым пламенем, то свет может стать значительно ярче. На протяжении нескольких лет он вымачивал куски тонкой хлопчатобумажной материи в различных смесях солей редкоземельных и других элементов. После высушивания эти куски ткани, сделавшиеся плотными от корки окислов, в виде кожухов помещались вокруг пламени, которое сжигало ткань и оставляло хрупкое кружево невосприимчивого к пламени окисла. И оно затем продолжало ярко светиться.
В то время очень мало было известно о характеристиках многих окислов и еще меньше о том, как они ведут себя в смесях, поэтому никто не мог заранее предугадать, какое именно сочетание даст свечение белого цвета. Вначале, в 1885 г., Ауэр запатентовал газовый свет с кожухом из смеси окислов магния, лантана и иттрия, но ненадежность кожуха и болезненный зеленый свет, который он давал, сделали его непопулярным. Но к 1891 г. Ауэр обнаружил, что смесь окислов тория и церия в пропорции 99 к 1 дает вполне приемлемое свечение белого цвета (торий не принадлежит к редкоземельным элементам, а является более тяжелым – и, что было на тот момент неизвестно, радиоактивным – кузеном церия). Кожухи, производимые из этого материала, были более прочными и быстрее загорались. Ауэр отличался нетипичной для ученого предпринимательской жилкой, и вскоре его имя сделалось еще более знаменитым, чем имя Бунзена. Бунзеновской горелкой пользовались только в лаборатории, а новым ярким «светом Ауэра» (Auerlict) – все. Очень быстро различные компании, основанные Ауэром, распространили открытие венского химика по благодарному континенту. Только за один 1892 г. около 90 000 кожухов Ауэра было продано в Вене и Будапеште. Двадцать лет спустя ежегодный их выпуск уже составлял 300 миллионов штук.
Было какое-то мистическое совпадение в том, что фамилия Ауэр, родственная приставке Ur- («древний, первоначальный»), – древнегерманское слово, обозначавшее восход солнца. Практически тогда же, когда первые яркие газовые фонари Ауэра загорелись у кафе Оперы в Вене 4 ноября 1891 г., его соотечественник Густав Малер, часто наведывавшийся в упомянутое кафе, писал вокальное произведение под названием Urlicht («первичный свет»), которое станет частью его второй симфонии.
Ауэру явно очень нравилось называть изобретения своим именем. Вслед за успехом с газовым кожухом настал черед осмиевой нити накала в электрической лампочке, получившей название «Ауэр-Ослайт». Даже усовершенствуя кожухи для газовых фонарей, Ауэр пытался застраховать свой коммерческий успех, экспериментируя с материалами для электрических лампочек, которые, как он подозревал, со временем вытеснят газовое освещение. В 1903 г. он запатентовал сплав церия и железа – он назвал его Ауэрметалл № 1, – при ударе о который возникали искры. «Кремни» из этого материала до сих пор используются в зажигалках для сигарет. Казалось, все, к чему прикасается Ауэр, превращается в свет. И неудивительно, что при даровании ему дворянского титула для своего герба он выбрал девиз Plus Lucis – «больше света».
Церий – самый распространенный из всех редкоземельных элементов, он даже более распространен, чем многие знакомые нам элементы типа меди. Но создается впечатление, что ему суждено при столь широкой распространенности так и остаться непризнанным. Церий используется для улучшения качества чугуна, различных видов стали и алюминиевых сплавов. Порошкообразный окисел церия, известный под названием полировального порошка «крокус», – эффективный абразив, используемый для полировки драгоценных камней и стекла. В XIX столетии выяснилось, что соли церия обладают противорвотным действием, они используются в противокашлевых смесях, как антибактериальное средство при ожогах и туберкулезе. Особенно удобными для использования в качестве лекарств их делает характерный сладковатый привкус. Совсем недавно большой энтузиазм вызвало открытие, что добавление окиси церия к дизельному топливу значительно повышает качество его горения. Он до сих пор используется в освещении – для усиления яркости света на съемочных площадках в кино.
* * *
Церий был открыт самым великим шведским химиком, Йёнсом Якобом Берцелиусом. В отличие от своих более застенчивых соотечественников он регулярно публиковал результаты исследований, а также поддерживал оживленную переписку с коллегами из многих стран и принимал гостей из-за рубежа у себя в лаборатории. И если в популярной истории науки ему не нашлось достойного места, то вся вина за это лежит исключительно на предрассудках Запада.
Мир минералов не был первой любовью Берцелиуса. Он родился в 1779 г. и зрелости достиг в то время, когда казалось, что славные времена шведской науки уже миновали. Талантливый аптекарь Шееле уже ушел в мир иной, так же как химики-минералоги Брандт и Ган, которые обнаружили новые похожие на железо металлы в рудах, добытых на королевских копях. Не стало уже и всемирно известного ботаника Карла Линнея, который осмелился предположить, что человек способен классифицировать всю природу, и положил хорошее начало этому предприятию, создав свою прославленную номенклатуру для растений и животных.
Получив медицинское образование и заинтригованный, как и многие ученые того времени, воздействием электрического тока на живые организмы, Берцелиус хотел разгадать тайну самой жизни. Вначале ему нужно было опровергнуть модные теории витализма и предложить более рациональное объяснение физиологии людей и животных. Хорошим началом стало появление названия «животная химия». На короткий период в начале XIX века, эта тема оживленно обсуждалась в науке. В Королевском Обществе в Лондоне возникла специальная группа под названием «Клуб животной химии». Среди его членов был Дэви, а Берцелиус являлся активным членом-корреспондентом. Однако научные проблемы, ассоциировавшиеся с данным направлением исследований, как оказалось, в основном, не поддавались экспериментальному изучению. Тем не менее на проблемах, связанных с химией жизни, Берцелиус сумел отточить свои способности химика-аналитика. Кроме того, ему удалось привлечь поддержку состоятельного шахтовладельца Вильгельма Хизингера. Несмотря на свое демонстративное неприятие неорганической химии, Берцелиус, как и многие другие шведские химики до него, не мог не откликнуться на зов земли.
Берцелиусу принадлежит заслуга введения в лабораторный обиход привычных ныне вещей, таких как, например, резиновые трубки и фильтровальная бумага, но, в отличие от Бунзена с его горелкой и Дэви с его шахтерской лампой, он не сумел закрепить за собственными изобретениями свое имя. Он был создателем концептов и слов, которые с тех пор успели перешагнуть границы чисто научного лексикона и вошли в самый широкий обиход: слова «катализ» и «протеин» придуманы именно им. Им была проделана неоценимая работа по определению пропорций, в которых элементы и их соединения вступают в связи друг с другом, что послужило основанием для атомарной теории, выдвинутой англичанином-квакером Джоном Дальтоном, и впервые в истории дало химии солидное математическое основание. Именно Берцелиус первым обратил внимание на удобство сокращенных обозначений для элементов и изобрел современные химические символы. Его система кодирования их названий с помощью одной или двух букв на основе латинского названия элементов с той поры вошла в практику далеко не только химической науки. Соединение двух последних идей – символа для каждого элемента и понимания того, что они соединяются друг с другом в определенных пропорциях – неизбежно привело к появлению первых химических формул, тех сочетаний букв и цифр, которые для химиков значат очень много, а всем остальным представляются совершенной галиматьей. («А, H2SO4, профессор!» – так, по мнению Флэндерса и Свонна – героев сатиры Ч. П. Сноу на конфликт «двух культур» «физиков» и «лириков», приветствуют друг друга ученые.)
Эта система обозначений представляется нам теперь одновременно знакомой и слишком формальной. Однако ее появление в 1811 г. стало настоящим графическим откровением. Последствия для научного понимания материи были грандиозны. В своих оборудованных по новейшему слову экспериментальной науки лабораториях ученые эпохи Просвещения, оставив алхимические поиски в далеком и темном прошлом, показали, что способны синтезировать простые соединения, существующие в природе. Лавуазье, соединив газы водород и кислород, получил воду. Экзотические горючие металлы, которые сумел выделить Дэви, можно было сжечь и получить окислы, содержащиеся в природных минералах. Система же Берцелиуса стерла всякое различие между материалом, получаемым из естественных источников, и тем же материалом, полученным лабораторным путем. Как только веществу, например аммиаку, дается обозначение NH3 и оно перестает именоваться «духом нюхательной соли», сразу же становится ясно, что совершенно неважно, каким способом оно получено, так как в любом случае это одно и то же вещество.
Всего перечисленного более чем достаточно, чтобы обеспечить человеку репутацию великого ученого, но упомянутым достижения Берцелиуса отнюдь не ограничивались. Ибо он, помимо церия, открыл еще три химических элемента: торий, селен и кремний. Все они по своей природе теснейшим образом связаны с землей. Все названные открытия были результатом активного участия Берцелиуса в горном деле.
Силикатные минералы, из которых Берцелиус получил чистый кремний, составляют основу коренной породы шведских почв. Берцелиус обнаружил селен, элемент близкий к сере, в осадке, собранном на предприятии по производству серной кислоты, в которое он вложил свои деньги. Торий и церий он получил из необычных минералов, присланных ему на анализ. В случае с церием Берцелиус работал в теснейшей связи со своим покровителем Хизингером в Стокгольме, а также в поместье Хизингера и непосредственно в шахтах, систематически подвергая электролизу различные соли, добываемые из минеральных образцов, которые находили на одной из заброшенных шахт Хизингера. Берцелиус выбрал для нового элемента название церий под влиянием сделанного незадолго до того открытия карликовой планеты Цереры, следуя примеру элемента урана, который был назван в честь открытия планеты Уран.
И хотя шведы были первыми, кто стал применять электролиз для получения новых элементов, им пришлось отстаивать свой приоритет в столкновении с Дэви. Когда сведения об этом дошли до французского химика Воклена, он заявил, что, если бы Институт Франции своевременно получил в свое распоряжение данные факты, Дэви пришлось бы поделиться медалью Наполеона с Берцелиусом.
Слава Берцелиуса в истории химии пострадала из-за позднейших успехов немецкой, французской и британской науки. Однако, как мне кажется, ей отнюдь не способствовала и специфика шведского национального характера. Одной из целей моего посещения Стокгольма было намерение увидеть те вещества, которые собрал Берцелиус и которым дал наименования в своей новой системе обозначений. Я когда-то увидел их на цветной вкладке в старой биографии – маленькие пузырьки, наполненные порошками пастельных оттенков голубого, желтого, серого, мыльно-зеленого цветов. На каждом – соответствующая формула, написанная рукой самого Берцелиуса. Один из пузырьков с содержимым конфетно-розового цвета заметно отличается от всего остального. Очень немногие соли действительно имеют розовый цвет. Подпись под картинкой сообщала, что все эти сокровища демонстрируются в Музее Берцелиуса. Но музея больше не существует, а его содержимое, как мне сообщили, хранится в ящиках в Шведской Королевской академии наук в ожидании того дня, когда его наследники и земляки вновь сочтут возможным почтить его грандиозный вклад в теорию, практику и язык химии.