Книга: Вселенная на ладони
Назад: Большой взрыв
Дальше: Границы Вселенной

Проблемы Большого взрыва

На сегодня теория Большого взрыва бесспорно лучшая из всех, которая у нас имеется для объяснения того, как и из чего произошла Вселенная. Все указывает на то, что она началась с маленькой горячей точки. И все же эта теория не лишена некоторых затруднений, которые невозможно обойти.

Как может что-то произойти из ничего?

Согласно первоначальной версии теории Большого взрыва, Вселенная начинается как сингулярность – бесконечно малая, бесконечно плотная точка, существование которой предусматривалось общей теорией относительности Эйнштейна. Это было в буквальном смысле этого слова ничто. Но как из ничего может возникнуть что-то?
Пожалуй, данная сингулярность не является реальным свойством Вселенной. Скорее, это яркий, неоновый указатель того, что мы не вполне корректно понимаем физику. Как мы уже видели в главе 4, физики пытаются объединить революционную теорию Эйнштейна с квантовой физикой для создания более завершенной Теории всего.
Мы уже знаем, что в квантовом мире нечто вполне может возникнуть из ничего. Даже в абсолютном вакууме энергия может превратиться в пару частиц, которые затем мгновенно исчезают. Физики называют их виртуальными частицами. Эти же самые частицы участвуют в излучении Хокинга из черных дыр. Теория всего могла бы показать нам, что структура пространства-времени Эйнштейна не является непрерывной, а образована из серий пузырьков. Если это так, то эти пузырьки могли возникнуть и исчезнуть точно так же, как виртуальные частицы.
В таком случае существует вероятность, что наша Вселенная не возникла из ничего, а появилась из крошечного пузырька в пространстве-времени.
Почти из сингулярности, но не совсем. Однако нам необходимо получить объяснение, почему наш пузырек расширялся, вместо того чтобы просто исчезнуть.
В первоначальной версии теории Большого взрыва нет ничего такого, что помогло бы нам объяснить это затруднение.

Что происходило до Большого взрыва?

Этот вопрос напрямую связан с предыдущим вопросом – как что-то может возникнуть из ничего? Первоначальная версия теории Большого взрыва говорит о том, что время было запущено вместе со взрывом сингулярности. Ровно так же, как нет ничего севернее Северного полюса, не было ничего до самой ранней точки отсчета времени.
Такой ответ не удовлетворяет большинство людей, особенно если рассматривать обычные причинно-следственные связи. Предположим, вы роняете книгу. Ее удар о пол (следствие) случится после того, как вы позволили ей это сделать (причина). Нам хорошо знакома идея того, что, если вы видели только то, как книга ударяется о пол, вы имеете право полагать, что несколько ранее кто-то уронил ее.
Если Большой взрыв был следствием, тогда что было причиной? Если следствие создало время, тогда как может существовать априорная причина? В рамках первоначальной модели Большого взрыва рассуждения о времени до Большого взрыва просто лишены смысла.

Магнитные монополи

В рамках первоначальной теории Большого взрыва ранняя Вселенная могла быть достаточно горячей, чтобы создавать магнитные монополи – гипотетические частицы, обладающие только одним магнитным полюсом. Однако физикам ни разу не встречались никакие магнитные монополи ни в одной части Вселенной.

Колебания температур в реликтовом микроволновом излучении

Когда в результате рекомбинации высвобождался свет, который мы сейчас рассматриваем как реликтовое микроволновое излучение, температура вселенной равнялась около 3000 К (2727 градусам по Цельсию). Но сегодня излучение, которое мы улавливаем от РМИ, соответствует температуре, равной всего 2,7 К, так как Вселенная значительно расширилась.
С помощью спутников, таких как WMAP или «Планк», астрономы получили подробные карты реликтового микроволнового излучения и обнаружили незначительные отклонения температур всего на одну миллионную часть.
Некоторые части РМИ очень незначительно горячее или холоднее остальных. Это указывает на то, что некоторые области ранней Вселенной были незначительно горячее или холоднее, когда высвобождалось РМИ.
Такое распределение температур было бы объяснимо, если бы в ранней Вселенной вещество было распределено неравномерно. Несколько более плотные области были бы горячее, а менее плотные – холоднее. Эта картина соответствует и современной структуре Вселенной, где гигантские сверхскопления галактик окружены масштабными космическими пустотами. Менее плотные области были растянуты, как следствие расширения, с образованием пустот, а гравитация более плотных зон притягивала дополнительный материал, образуя скопления. Однако первоначальная модель Большого взрыва не дает объяснения происхождению мельчайших вариаций в распределении вещества в ранней Вселенной.

Проблема горизонта

Незначительные колебания температур в реликтовом микроволновом излучении происходят невероятно гладко. Каким образом фоновая температура остается одной и той же во всем пространстве доступной обзору Вселенной?
Если вы зимой откроете окно, все тепло уйдет наружу и в комнате станет так же холодно, как и на улице. Физик в этом случае скажет, что два места в итоге достигли термального, или температурного, равновесия. Но для того, чтобы оно было достигнуто, требуется время. Как и все во всей Вселенной, максимальная скорость, с которой может происходить обмен чем-либо между двумя пунктами в пространстве, является скорость света. Этот вопрос не представляет какой-нибудь проблемы в вашем доме, но все меняется, когда речь идет о космическом пространстве.
Давайте представим клочок неба, находящийся по одну сторону от вас на расстоянии в 10 миллиардов световых лет, и затем другой клочок неба, находящийся на том же расстоянии, но в противоположной стороне. Таким образом, расстояние между ними составит 20 миллиардов световых лет. Самой Вселенной исполнилось всего 13,8 миллиарда лет, тогда откуда эти два региона космического пространства нашли время, чтобы достичь термального равновесия?
Можно было бы сказать, что в прошлом они находились ближе друг к другу, но они никогда не располагались по отношению друг к другу достаточно близко. На основе теории Большого взрыва можно рассчитать, как быстро расширялась Вселенная, начиная с момента ее зарождения. Учитывая то расстояние, на котором они находятся сегодня по отношению друг к другу, эти два пункта космического пространства никогда не смогли бы оказаться на достаточно близком расстоянии друг от друга, чтобы достичь термального равновесия. У света никогда не было возможности пройти от одного пункта до другого – каждый из них всегда находился за горизонтом другого. Это проблема горизонта представляет собой одно из самых больших затруднений первоначальной версии Большого взрыва.

Проблема плоской Вселенной

Поверхность Земли выпуклая, но для того, чтобы эта выпуклость стала заметной и очевидной, вам нужно увидеть или пройти по ней определенное расстояние. Представьте себе, что вы привязаны к одному и тому же месту и можете видеть только ограниченную область пространства диаметром десять метров вокруг себя. Вы решите, что Земля плоская, даже если это не так.
Эта ситуация аналогична тому, что мы испытываем по отношению к Вселенной. В настоящее время мы ограничены пространством Солнечной системы и полностью полагаемся на свет, который доносит до нас подробности о том, что находится дальше за ее пределами. Однако у нас есть возможность видеть объекты, только если у этого света было достаточно времени, чтобы дойти до нас. Вселенная вначале расширялась настолько стремительно, что некоторые ее области мы никогда уже не увидим. Поэтому необходимо делать различие между Вселенной (все сущее) и Вселенной, доступной нашему обзору (видимой нам Вселенной).
Измерения видимой нам области Вселенной говорят о том, что космическое пространство в ее пределах плоское – в целом оно не имеет заметных искривлений. В отношении этого феномена существуют два возможных объяснения. Во-первых, предполагается, что расширяющаяся Вселенная растянула пространство космоса настолько, что ее небольшая часть, видимая для нас, кажется плоской, даже если более широкая Вселенная искривлена. Это аналогично тому, что десятиметровое пространство вашей комнаты смотрится как плоское, тогда как поверхность нашей планеты на самом деле изогнута. Между тем, согласно первоначальной версии Большого взрыва, Вселенная не расширилась настолько, чтобы это могло случиться. Отсюда можно заключить, что история Большого взрыва либо еще не закончилась, либо вся Вселенная – и та ее часть, которую мы можем видеть, и та, которую не можем, – плоская. Астрономы рассчитали, что вероятность того, что такое вообще возможно, равна приблизительно одному на сотни триллионов триллионов триллионов триллионов триллионов.

Проблема точной настройки

То, что наша Вселенная плоская – не единственная вещь, которая представляется в высшей степени маловероятной. Представьте, что в нашей Вселенной имеется гигантская панель управления с множеством кнопок, ручек и шкал. Каждый из них управляет каким-либо одним параметром Вселенной. Это может быть скорость света, масса электрона или сила гравитации. Если вы измените хотя бы один из этих параметров – даже на несколько процентов – наша Вселенная оказалась бы совершенно другой.
Возьмем силу гравитации. Если бы она была больше, вещество в центре звезд разрушалось бы значительно сильнее. Процесс слияния веществ в звездах протекал бы куда стремительнее, и их жизнь длилась бы месяцы и годы, а не миллиарды лет, как это происходит сейчас. В этих условиях у жизни на Земле не было бы шанса возникнуть. Измените шкалу на достаточную величину, и звезды не образуются вовсе.
Если бы гравитация была значительно сильнее, она могла бы развернуть первоначальное расширение Вселенной в обратном направлении и вызвать всеобщий коллапс, вернув все в исходное состояние «Большого хруста» до того, как первые звезды вообще зажглись.
Если все эти настройки носят случайный характер и могли принять значения, варьирующиеся в самых широких пределах, тогда каким образом все настройки оказались ровно такими, какие необходимы для того, чтобы возникла Вселенная, полная звезд, планет и людей? Результатом большинства других гипотетических настроек стало бы появление пустой Вселенной или вообще ничто. Существует несколько ответов на проблему точной настройки. Во-первых, это могла быть просто удача – невероятные вещи иногда случаются. Во-вторых, это могло быть деянием некоего всемогущего существа, которое все тщательно предусмотрело. Однако ни одно из этих предположений не может считаться удовлетворительным, так как их нельзя проверить.
Однако третий вариант – идея под названием инфляция – потенциально способен объяснить не только проблему точной настройки, но и все другие проблемы, связанные с Большим взрывом.

Устранение проблем Большого взрыва

К концу 1970-х годов многие из этих проблем с Большим взрывом стали очевидными. Было ясно, что определенного рода Большой взрыв все-таки имел место, так как трудно было просто игнорировать такие очевидные свидетельства, как реликтовое микроволновое излучение, ядерный синтез и квазары. Однако в чем-то надо было уступить.
Начиная с 1979 года и вплоть до начала 1980-х годов физики Алан Гут, Андрей Линде и Пол Стейнхардт занимались поисками способа совсем незначительно изменить идею Большого взрыва, чтобы все ее достоинства оставались бы незатронутыми. Их концепция получила название инфляции, и ее предпосылки невероятно просты: на своих ранних этапах Вселенная испытала период расширения, значительно более стремительного, чем все то, что происходило с ней позже.
Это можно представить, как расширение, предсказанное Хабблом, но только как если бы оно проходило под действием стероидов. В первую триллионную часть триллионной части триллионной части секунды Вселенная прошла от значительно меньшего, чем атом, размера до размера грейпфрута. Может показаться, что это не так уж много, но это соответствует фактору масштабирования, равному единице с семьюдесятью восьмью нулями. Если вы промасштабируете размер красной кровяной клетки на эту величину, то вы получите нечто в триллион триллионов триллионов раз более широкое, чем видимая часть Вселенной.

 

Наша лучшая иллюстрация истории Вселенной, с первоначального периода инфляции и до сегодняшней эры доминирования темной энергии

 

Если мы будем брать каждую из проблем Большого взрыва по очереди, мы сможем увидеть, как добавление раннего инфляционного периода стремительного расширения способно помочь их решению.

Как что-то может возникнуть из ничего?

Когда ранее мы рассматривали этот вопрос, мы говорили, что, возможно, Вселенная произошла не из ничего, а из квантового пузырька в пространстве-времени. Однако нам было необходимо объяснить, почему этот пузырек снова не исчез. Согласно теории инфляции, пузырек мог выжить, если он подвергся периоду стремительного расширения, аналогичному инфляции.

Что происходило до Большого взрыва?

Наше понимание Большого взрыва вытекает из рассмотрения той скорости, с которой космическое пространство расширяется в настоящее время, затем мы идем в обратном направлении, возвращаясь к точке, с которой началось расширение. Строго говоря, это расширение – в той его части, которое подчиняется закону Хаббла, – началось только после того, как инфляция завершилась. Таким образом, инфляция – это и есть то, что происходило до Большого взрыва. Многие теоретики утверждают, что нет никакой необходимости в сингулярности до инфляции, особенно, если действительно существует теория всего. Независимо от того, что было в этой области до того, как она подверглась инфляции и образовалась Вселенная, вполне возможно, оно существовало здесь вечно.

Магнитные монополи

Период инфляции мог бы привести к разбросу любых магнитных монополей в разные стороны на значительно большие расстояния, чем предполагала первоначальная картина Большого взрыва. К настоящему времени они должны быть так далеко разбросаны во все стороны, что неудивительно, как мы никогда не сталкивались с ними.

Вариации температур в РМИ

Известно, что на мельчайшем уровне всегда существуют виртуальные частицы, внезапно появляющиеся и так же внезапно исчезающие. Такие квантовые флуктуации вызывают временные изменения в количестве энергии в любой точке пространства. В течение инфляции они могли быть увеличены до астрономического масштаба, приводя к областям новой Вселенной с большим или меньшим количеством энергии, чем в среднем.
Это объясняет, почему реликтовое микроволновое излучение характеризуется незначительными вариациями температур. При сравнении ожидаемых величин квантовых флуктуаций, подвергшихся инфляции, с величинами температурных вариаций в РМИ физики обнаруживают хорошее соответствие между ними. Как мы уже видели, эти вариации стали теми зернами, вокруг которых позже образовывались сверхскопления и сверхпустоты. Следовательно, инфляция также способна объяснить, почему структура современной Вселенной выглядит именно так.

Проблема горизонта

Вначале инфляция побуждала Вселенную расширяться намного быстрее, чем это предполагалось в первоначальной версии теории Большого взрыва. Это означает, что обе области пространства могли изначально находиться на значительно более близком расстоянии друг от друга, и все равно оказаться так далеко, как сейчас. Если бы все точки в космическом пространстве были значительно ближе друг к другу до наступления инфляции, они могли бы достичь термального равновесия до того, как были разбросаны во все стороны.

Проблема плоской Вселенной

Одно из решений проблемы плоской Вселенной состоит в том, что вначале космическое пространство было растянуто настолько, что видимая нам часть вселенной оказалась плоской. Даже в том случае, когда у более широкой Вселенной могут быть определенные искривления (во многом так же, как Земля могла бы казаться плоской, если смотреть на нее с небольшой части ее поверхности).
Проблема в том, что, как мы уже отмечали, одного только Большого взрыва было бы недостаточно, чтобы растянуть Вселенную так сильно. Однако все станет понятнее, если предположить, что был период инфляции, вызвавший большее расширение, чем мы прежде думали. Инфляция должна была сгладить любые искривления, существовавшие в видимой части Вселенной.

Точная настройка и вечная инфляция

Остается только одна проблема – проблема точной настройки, и для ее решения была выдвинута гипотеза вечной инфляции.
Идея инфляции дает нам в руки привлекательное решение основных проблем, связанных с концепцией Большого взрыва. Вместе с тем, если вы намерены заявить, что период стремительного расширения Вселенной действительно существовал, вам необходимо дать объяснение того, почему она подверглась инфляции и как преобразовалась во Вселенную, описанную в концепции Большого взрыва.
Для поиска ответа теоретики концепции инфляции прибегли к идее существования инфляционного поля. В рамках физики поле – это пространство, в пределах которого действуют определенные силы. Например, Земля обладает гравитационным полем. Ее сила по всей поверхности Земли варьируется – она сильнее над горами и слабее ниже, в долинах. По мнению физиков, инфляционное поле также варьируется. Инфляция происходит в областях, где оно достаточно сильное, и прекращается там, где слабое. В момент прекращения инфляции энергия, запертая в инфляционном поле, конвертируется в вещество и радиацию: происходит Большой взрыв.
Однако сторонники этой концепции получили бы возможность обосновать переход энергии инфляционного поля во что-то, что в точности напоминало бы Большой взрыв, только при условии принятия идеи о том, что этот переход осуществляется не одномоментно, не сразу. Тогда каждый раз при частичном переходе энергии вы получаете очередной Большой взрыв, создающий новую изолированную область космического пространства, в то время как инфляция где-то в другой области пространства продолжается. Это вечная инфляция, и она влечет за собой фундаментальные последствия.
Следствием множественности Больших взрывов является множественность вселенных. Согласно инфляционной теории, должно существовать приближающееся к бесконечности – возможно, даже действительно бесконечное – число вселенных. В каждой из них, в зависимости от того, каким именно путем она трансформировалась из инфляционного поля в Большой взрыв, законы физики, массы частиц и величины сил, будут различными. Это эквивалентно ручкам, шкалам и кнопкам на управляющей панели каждой из вселенных, настройки которых незначительно различаются.
Если вы думаете, что ваша вселенная – единственная на свете, тогда, конечно, тот факт, что ее панель управления просто идеально настроена для вашего существования, вы скорее сочтете озадачивающим. У вас может даже возникнуть мысль о Создателе. Но если вы осознаете, что ваша вселенная – лишь одна из множества других, то в какой из них вы оказались бы?
Естественно, вы не могли появиться во вселенной, настройки которой не позволят вам существовать, в пределах которой не могут образоваться звезды и планеты. Вы можете быть только там, где всё настроено соответствующим образом. Идея вечной инфляции решает проблему точной настройки путем утверждения, что в космическом пространстве существует бесконечное инфляционное множество вселенных и в их пределах реализуется бесконечное множество самых разных вариантов настроек. Где-нибудь, в той или иной области космического пространства, так или иначе, настройки должны оказаться «правильными», и у вас нет возможности быть где-то не там.

Множественная Вселенная

К идее множественности вселенных нужно привыкнуть. Это настоящий калейдоскоп возможностей, где все, что может вообще случиться, где-то случается. Если множественная вселенная бесконечна, тогда каждая возможность реализуется бесконечное число раз.
Чтобы увидеть, что это действительно так, представьте себе, что вы подкидываете игральные кости шесть раз. Каковы шансы, что выпадут числа 1, 2, 3, 4, 5, 6? Ответ – 1,5 %. Соответственно, в среднем эта модель выпадения чисел должна реализовываться три раза на каждые двести подкидываний кости. И чем больше вы будете кидать кости, тем большее число раз вы увидите ту же саму модель.
В точности то же самое происходит с множественной вселенной. Каждый раз, когда инфляционное поле переходит в Большой взрыв, – это очередное подкидывание игральной кости. Если будете подкидывать кости достаточное число раз, вы, скорее всего, увидите, как та же самая модель (вселенной) повторяется. Если вы будете подкидывать кости бесконечное количество раз, то повторение этой модели вам будет гарантировано.
Пройдитесь по всей этой множественной вселенной, и вы рано или поздно столкнетесь с другой вселенной, в которой все атомы построены в порядке, идентичном тому, какой наблюдается в данной вселенной. Именно каждый атом. В том числе и атомы на моих пальцах, напечатавших эти слова, потому что атомы, мерцавшие на ночном небе, вдохновили меня на карьеру в астрономии, когда я был еще ребенком, и атомы в ваших глазах, принимающих свет, отразившийся с этой страницы. В другой части множественной вселенной вы делаете абсолютно то же самое – полностью повторяется тот же самый сценарий.
Что это говорит о выборе, который вы делаете, учитывая, что существуют миллионы других вас в миллионах других вселенных, вас, делающего точно такой же выбор? И миллионы других приблизительно-вас, делающих совершенно другой выбор? Где-то там, в других областях космического пространства, существует множество других вселенных, где вы являетесь президентом Соединенных Штатов, и еще других – где Вашингтон все еще управляется из Англии. Любимые, покинувшие мир в этой вселенной, все еще живы и благоденствуют в других. В некоторых вселенных у вас голова цыпленка или сумка кенгуру спереди. В бесконечной множественной вселенной существование каждой возможной конфигурации атомов гарантировано бесконечное количество раз.

Доказательства инфляции

Множественная вселенная, очевидно, является естественным следствием вечной инфляции, которая, в свою очередь, помогает нам объяснить свойства и характеристики нашей Вселенной, а также продвинуться в понимании Большого взрыва. Вместе с тем в настоящее время у нас нет абсолютно никаких доказательств того, что инфляция, будь то вечная или какая-либо еще, реально существует. Фактически Пол Штейнгардт, один из отцов-основателей этой теории, отвернулся от нее. С тех пор он превратился в открытого критика идеи множественной вселенной.
Наряду с этим есть множество исследователей, убежденных в том, что возможность обнаружения доказательств инфляции все-таки существует. В действительности еще в 2014 году команда ученых вызвала настоящую сенсацию по всему миру, заявив о том, что они обнаружили некое неопровержимое доказательство. Данные поступили от BICEP2, экспериментальной лаборатории, расположенной на антарктической станции Амундсена – Скотта в районе Южного полюса. Ученые воспользовались ею для того, чтобы еще раз взглянуть на реликтовое микроволновое излучение.
Предполагалось, что расширение, протекавшее столь стремительно, как это было в случае с инфляцией, должно было посылать гравитационные волны, пробивавшиеся наружу сквозь зарождающуюся Вселенную. Может быть, наступит день, когда мы сможем уловить эти первобытные гравитационные волны, но в настоящее время, по прошествии более 13 миллиардов лет, они еще очень малы, слишком малы для того, чтобы наши современные детекторы гравитационных волн могли их уловить. Между тем, реликтовое микроволновое излучение смогло добраться до нашего местопребывания, предложив нам снимки того, на что была похожа Вселенная в возрасте всего 380 тысяч лет. Если бы Вселенной сейчас было сорок лет, то РМИ представлял бы собой ее младенческий облик, которому десять часов от роду. Любые изначальные гравитационные волны, проходящие через космическое пространство в момент высвобождения РМИ, должны были оставить какие-то следы или отклонения в его свете. В марте 2014 года команда эксперимента BICEP2 сообщила миру о том, что они обнаружили эти искажения.
Правда, большинство астрономов сейчас согласно с тем, что этого пока не произошло. Сомнения прозвучали довольно быстро, а команда, работавшая со спутником «Планк», утверждала, что тот же самый эффект мог быть сгенерирован при прохождении света от РМИ сквозь пыль нашего собственного Млечного Пути значительно позже. Таким образом, на сегодня астрономы продолжают охоту за первыми доказательствами существования инфляции.
Фиаско команды ученых BICEP2 случилось за 18 месяцев до того, как в ходе эксперимента LIGO в сентябре 2015 года впервые были открыты гравитационные волны, возникшие при столкновении черных дыр. LIGO было недостаточно чувствительным для того, чтобы улавливать изначальные гравитационные волны, но теперь, когда гравитационные волны были наконец-то подтверждены, очевидно, начнется гонка по установке все более крупных и более продвинутых детекторов.
День, когда эти приборы смогут показать нам дорогу к множественной вселенной, безусловно, наступит.
ХОЛОДНОЕ ПЯТНО В РМИ
Недостаток изначальных гравитационных волн не остановил некоторых ученых, заявлявших о том, что они уже обнаружили доказательства существования других вселенных. Все они указывают на наличие необычно холодной области в РМИ.
Впервые обнаруженное со спутника WMAP в 2004 году, это пятно было снова замечено со спутника «Планк» в 2013 году. Эта область на одну 140‐миллионную долю градуса холоднее, чем средняя температура РМИ, составляющая 2,7 К, что значительно выходит за пределы нормальных температурных вариаций и что слишком велико для того, чтобы объяснить это квантовыми флуктуациями, усиленными инфляцией.
Вероятно, свет из этого пятна РМИ прошел через особенно обширную сверхпустоту – область со значительно меньшим числом галактик, чем в среднем во Вселенной. Потеряв энергию при прохождении по этому пути, оно, очевидно, стало холоднее. За исключением того, что масштабные исследования 7 тысяч галактик, проведенные в 2017 году, такой пустоты не обнаружили.
Согласно взглядам других астрономов, это холодное пятно является свидетельством влияния других вселенных на нашу собственную. В процессе вечной инфляции мы могли удариться о пузырек соседней вселенной, оставив «кровоподтек» на РМИ. Эта идея продолжает оставаться в высшей степени противоречивой.
Назад: Большой взрыв
Дальше: Границы Вселенной