Книга: Мегатех. Технологии и общество 2050 года в прогнозах ученых и писателей
Назад: 2. Физические основы будущей технологии
Дальше: 4. За гранью закона Мура

3. Возможности биотехнологий

Роберт Карлсон

 

Биология откроет исключительные возможности для отдельных лиц, компаний и целых экономик — от медицины до промышленности.

 

В 2050 году «The Economist» сможет попадать прямо в ваш мозг. Управление перспективных исследовательских проектов Министерства обороны США (DARPA) хочет построить мост между цифровыми устройствами и корой больших полушарий человеческого мозга. Этот проект стоимостью в 60 млн долларов преследует весьма смелую цель: привить мозгу универсальные цифровые функции для ввода и вывода информации. Трудно предположить, что может произойти в результате такой интеграции. Но очевидно, что будущее биологии не ограничивается лишь тем, что мы способны представить себе сегодня. Прямое слияние электронных и биологических вычислений позволит расширить возможности как живой, так и неживой материи в новых и совершенно непредсказуемых направлениях.
Менеджеры программ DARPA иногда называют этот нейронный интерфейс «кортикальным модемом». Проект опирается на значительный клинический опыт, полученный при подключении человеческих нейронов к электронным устройствам. Кохлеарные имплантаты и искусственные сетчатки используются уже в течение многих лет, восстанавливая соответственно слух и зрение людей. Проводятся клинические испытания имплантированных в мозг электродных массивов, использующихся для переноса нейронных сигналов мимо поврежденных участков позвоночника и обеспечения прямого нейронного управления роботизированными конечностями. В некоторых случаях такие нейронные протезы позволяли парализованным снова начать двигаться.
Тем не менее даже когда ученые добивались реального прогресса в создании «бионической женщины» (героиня американского телесериала), эта технология, по природе своей являющаяся разрушающим воздействием, встречается с разрушающим воздействием уже в отношении себя. Кибернетическое восстановление биологических функций скоро начнет конкурировать с регенерацией тканей и их заменой. Тканевые инженеры создают или выращивают пригодные для трансплантации внутренние органы, кости и соединительную ткань. Некоторые из этих нововведений все еще исследуются в лабораториях, тогда как другие уже вошли в клиническую практику — среди них такие разнообразные элементы, как мочевые пузыри, тазобедренные суставы, влагалища, трахеи, вены, артерии, яичники, уши, кожа, коленные мениски и «заплатки» для поврежденного сердца.
Прогресс ускоряется за счет разработки все более разнообразных методов изготовления тканей. Так же, как кортикальный модем расширит биологический потенциал человека, обеспечив возможность непосредственного участия в цифровых вычислениях, плоды последних дадут возможность создания новых средств манипулирования клетками. Возможно, тогда тканевые инженеры, сегодня ограничивающиеся выращиванием тканей из отдельных клеток в чашке Петри, смогут использовать 3D-принтеры, чтобы точно вставлять клетки в заготовку требуемого органа, выращиваемую на специальной матрице, называемой еще «скаффолд», точно так же, как детали автомобиля, самолета или смартфона устанавливаются на положенное им место в конструкции. Если рассматривать наши тела тоже как конструкцию, вскоре лечение станет заключаться в замене изношенных или поврежденных «деталей» новыми. Человеческий биоматериал можно будет обновлять.
Создание заменяющих тканей является лишь первым шагом в развитии регенеративной медицины, которая изначально улучшит качество жизни, а затем, скорее всего, значительно расширит ее. В ближайшие десятилетия начнут постепенно возникать варианты терапии, затрагивающие молекулярные механизмы старения. Постепенно они будут набирать обороты, и, может быть, придет день, когда нам не придется говорить: «Это конец». Однако последствия со временем будут накапливаться.
Люди не ограничатся хирургическими и фармацевтическими вмешательствами и вскоре начнут модифицировать свой геном. Сперва мы постараемся исключить из него определенные заболевания. Начнем с генетических, которые относительно легко идентифицировать — таких как бета-талассемия, болезнь Хантингтона и серповидноклеточная анемия. Затем займемся снижением риска возникновения болезни Альцгеймера, рака всех типов и болезней сердца.
Сегодня многие наблюдатели беспокоятся по поводу генетических изменений, внесенных в исследовательских целях в нежизнеспособные зиготы. Однако у возможности изменять геном будущих поколений потенциальные последствия более существенны. Не нужно даже особенно напрягаться, пытаясь перечислить то, что люди захотели бы генетически улучшить — здоровье, умственные и физические способности, внешний вид. Дискуссий о том, насколько далеко можно зайти в подобных изменениях, и о том, кто имеет право на доступ к ним или право отказывать в этом другим людям, хватит на десятилетия.
Независимо от хода этих обсуждений, спрос, вероятно, приведет к принятию быстрого решения. Оно будет основано на стремлении людей расширить унаследованный умственный и физический потенциал с помощью технологий. Мы ежедневно видим проявление этого желания в результатах работы косметической хирургии, в татуировках, в коррекции зрения, а также в использовании средств для улучшения достижений в спорте и учебе. Таким образом, даже если ремонт тел может быть чисто биологическим, спрос на расширенные возможности, скорее всего, приведет к разработке и внедрению технологии, включающей кортикальный модем.

 

Человек, подключенный к сети

 

Нейронный интерфейс обеспечит прямую связь между человеческим разумом и интернетом. Благодаря ей вся имеющаяся физическая, электронная и экономическая инфраструктура станет, если можно так выразиться, могучим экзоскелетом, обеспечивающим огромную силу тем, кто его носит. При помощи роботов, подключенных к Сети, мы проникнем в самые удаленные уголки планеты. Мы увеличим свою интеллектуальную мощь благодаря прямому доступу к библиотекам, суперкомпьютерам и космическим телескопам. Нашему разуму больше не придется всматриваться в окружающую действительность через две узкие щелки в черепе, поскольку он станет по-настоящему открытым для Вселенной — со всеми сопутствующими этому преимуществами и рисками.
Кортикальный модем, по определению, будет двухсторонним каналом связи. Подключение такого интерфейса к нейронам человека поднимает вопрос о том, что еще может быть включено в этот информационный поток. Если мы начнем потоковую передачу данных из Интернета в мозг, то попутно также импортируем и все проблемы, связанные с сетевой безопасностью, с которыми мы сталкиваемся сегодня (и, предположительно, с ныне еще даже не возникшими). Причем спам и вредоносные программы на смартфонах окажутся наименьшими из них. DARPA уже знает о потенциальных рисках и недавно ограничило силу идеального сустава бионического предплечья до «нормальной для человека» в основном по соображениям безопасности устройства, подключенного к Сети. Агентство обеспокоено возможностью взлома программы управления кибернетической рукой, если сила этой руки будет превосходить обычную, и неважно, кто предпримет попытку взлома — владелец руки или злоумышленник. И это только начало.
Но кто будет владеть паролем от вашего кортикального модема? Кто будет контролировать установку неизбежного потока обновлений программного обеспечения? Захотят ли силовые структуры через 35 лет иметь неограниченный доступ к вашему мозгу так же, как они сегодня настаивают на доступе к телефонным звонкам, электронной почте и содержимому вашего телефона или ноутбука? Как часто другие организации или люди будут использовать тот же канал доступа? Но даже перед лицом подобных проблем и рисков многие все же решат воспользоваться этими новыми технологиями.
Подобный прогноз сделать легко. Как остроумно заметил писатель-фантаст Уильям Гибсон: «Будущее уже здесь, оно просто еще неравномерно распределено». Научная фантастика — литература идей, и в лучших творениях этого жанра рассматриваются последствия возможного хода событий задолго до того, как они могут стать правдоподобными. Хотя первые робкие разработки элементарных нейронных протезов внедряются уже сегодня. Физика, химия или биология не ставят никаких реальных барьеров для развития этой технологии, прогресс будет зависеть лишь от скорости уменьшения нашего незнания того, как создавать эти устройства. Спрос на них, несомненно, окажется огромным, и динамика развертывания этого производства будет определяться скорее сроками разработки, чем ограничениями фундаментальной науки. И все же каждая технология таит свои сюрпризы. Сегодня «цифровой разрыв» дифференцированного доступа в Интернет считается формой образовательной дискриминации. Будут ли мозговые имплантаты разрушать или укреплять его? Какие социальные и экономические классы мы невольно выстроим, ведь степень совершенства природы каждого конкретного человека становится вопросом того, может ли он себе позволить последнее обновление программного обеспечения? Мы делаем реальные шаги к тому, что описано в первых главах каждого романа Гибсона, и нам следует быть готовым принять то, что пока еще только зрееет в его голове.

 

Когда программное обеспечение встречается с биологическими объектами

 

Генная инженерия, регенеративная медицина и информационные технологии в конце концов сольются воедино. Устранение несовместимости между обработкой информации и живой материей принесет как выгоду, так и проблемы — так же, как создание сетей породило сложности с безопасностью банковской деятельности, коммунальных услуг и производства. Что опять же подводит нас к Гибсону и начальным страницам его дебютного романа «Нейромант». Главный герой обнаруживает, что его новенькие только-только пересаженные органы были взломаны, и в организм запущен токсин, и герой не получит противоядие, пока не выполнит определенное задание. Уже проводятся клинические испытания различных искусственных органов, и когда будущее «равномерно распределится», нам придется столкнуться с вредоносными программами, установленными в наш биокомпьютерный материал. Что, если эти органы потребуют установки обновлений? Кто будет отвечать за управление этими обновлениями? И будут ли у них полномочия для запуска релизов нового кода через биологическую сеть подобно сегодняшним обновлениям программного обеспечения смартфонов? Другими словами, для настройки нам придется посетить врача или биологический код будет распространяться другими способами (возможно, восстанавливая первоначальный смысл понятия «вирус»)? Сможем ли мы отказаться от этих обновлений? В конечном счете у кого в руках будет находиться «пароль» нашей трансплантации и что это будет означать в данном контексте?
Опять же, как ни странно, ничто в этом сценарии не противоречит нашим знаниям из области физики, биологии или химии. Как и в случае кортикального модема, существует огромный спрос на технологии, которые уменьшат бремя болезней, улучшат качество жизни по мере старения человека, а затем преобразуют старение из чего-то, имеющего неизбежный конец, в управляемый непрерывный процесс. Впрочем, это будет долгая дорога.
И кортикальный модем, и регенеративная медицина являются примером того, как люди способны увлекаться техническим новаторством на фоне океана неизвестности. Мы пока не можем создать мозг или что-то, работающее подобным же образом, поскольку у нас нет полного понимания того, как функционируют составляющие его клетки — как по отдельности, так и все вместе. Тем не менее мы преодолеваем свое невежество, чтобы обеспечить для человеческой физиологии новые возможности. Теперь мы можем читать и писать на языке нейронов достаточно хорошо, чтобы подключать их непосредственно к неорганическим компьютерам. Мы достаточно хорошо контролируем поведение человеческих клеток, чтобы склеивать их в полезные формы. Которые, несмотря на то, что мы до сих пор не до конца понимаем их механизм, становятся действующими органами. Это свидетельствует о том, что масштабы биотехнологии в ближайшие десятилетия будут ограничены не тем, что мы сегодня знаем о биологических элементах, а тем, насколько хорошо мы сможем подобрать инструменты, чтобы все просто работало. Это modus operandi или образ действия, исторически приносящий людям огромную пользу.

 

Основа биотехнологического бума

 

Хотя мы пока только учимся эффективно и безопасно восстанавливать и модифицировать человеческие тела (включая геномы), читать и писать в лаборатории генетический код других организмов мы умеем уже на протяжении десятилетий. Спрос на подобные технологии очень велик. Для понимания направления движения очень важно правильно оценить экономический вклад биотехнологии, несмотря на раннюю стадию ее развития. Коммерческая деятельность, основанная на генетической модификации, постепенно и неуклонно становится основным благоприятствующим фактором американской экономики.
К 2012 году доходы США от биотехнологии превысили 2 % ВВП (рис. 3.1). Их можно разделить на три основных сектора: биология (то есть биофармакология), генетически модифицированные культуры и промышленная биотехнология (например, топливо, ферменты и материалы). Если рассматривать биотехнологию как самостоятельную отрасль, то в 2012 году она внесла в экономику США больший вклад, чем добыча полезных ископаемых (0,9 %), коммунальные услуги (1,5 %) или производство компьютерной и электронной продукции (1,6 %). Если относительная величина вклада биотехнологии и стала неожиданностью, то лишь потому, что ее недооценивали. Скажем, вклад полупроводников был замечен и оценен министерством торговли еще в 1958 году, когда он составлял менее 0,1 % ВВП. Но по состоянию на 2016 год до сих пор нет официальных данных о вкладе в экономику биотехнологий. В результате экономические последствия их применения каждый раз становятся неожиданными.

 

Рис. 3.1. Рост доходов США от биотехнологий, млрд долларов

 

Доходы от биотехнологии все чаще зависят от способности читать, изменять и записывать генетический код по одной паре оснований ДНК за раз. За последние 30 лет у автоматизированных приборов появилась способность взаимно преобразовывать электронные и биологические инструкции друг в друга. Очень важно обратить внимание на этот временной промежуток, поскольку он меньше времени, оставшегося до 2050 года, то есть до конца периода, рассматриваемого в этой книге. Еще через 30 лет эта технология станет недорогой, повсеместно распространенной и значительно более мощной. С 1985 года расходы на чтение и запись ДНК снижались, а почасовая пропускная способность приборов увеличивалась в геометрической прогрессии, удваиваясь каждые 18 месяцев. В последние годы производительность секвенирования росла гиперэкспоненциально, что обусловлено ростом спроса на чтение генома людей, возбудителей заболеваний, опухолей, сельскохозяйственных культур, домашних животных и любого другого естественно возникшего организма, до которого могут дотянуться руки ученых (рис. 3.2).

 

Рис. 3.2. Кривая Карлсона на фоне закона Мура.
Синтез ДНК и производительность секвенирования по сравнению с количеством транзисторов на кристалле интегральной схемы

 

После оцифровки эти последовательности генов представляют собой набор инструкций, полезных для кодирования новых генетических возможностей в создаваемых организмах, сегодня это в основном микробы и растения. Одна ДНК может как содержать код одного белка, используемого в качестве фармацевтического препарата, так и целого фермента, при помощи которого можно получить любую молекулу, для производства которой сегодня требуется бочка нефти. После десятилетий обучения программированию биологии теперь в своих проектах мы не ограничиваемся лишь найденными в природе генами или их расположением.
Теперь можно разработать генетический код в соответствии с конкретными функциональными спецификациями, а затем включить эти инструкции в геном. Однако, как и в случае с кортикальным модемом и заменой тканей, мы начинаем проектировать генетические схемы, не зная, как работают все их составные части. Наиболее сложные коммерческие синтетические генетические схемы сегодня включают всего около 12 генов. Они вставлены в геном дрожжей, которые сами состоят из более чем 5000 генов, и о многих из них мы мало что знаем. В настоящее время биоинженерия занимается взломом сложной системы, которая была создана не людьми и документация на которую отсутствует. В течение следующих 30 лет на преодоление этого пробела в наших знаниях будут направлены серьезные средства.
Ближайшие десятилетия мы проведем в изучении того, как сочетаются друг с другом все части и системы, лежащие в основе жизни. Число этих компонентов, их функции и принципы взаимодействия конечны, и мало кто сомневается, что со временем мы опишем их полностью. По мере улучшения понимания растущий спрос на рынке неизбежно приведет к развитию возможностей технологии. Как будет выглядеть мир, когда мы наконец разберемся в том, что именно мы делаем?

 

Будущее, созданное биотехнологией
Чтобы создать некоторое представление о будущем биоинженерии, давайте рассмотрим следующее упражнение по обратному инжинирингу. Чем бы показался авиалайнер «Boeing 777» в 1892 году, за столетие до его первого полета? В эпоху, когда автомобили были новинкой, а лошади с их навозом — все еще нормой повседневной жизни, каждый аспект современного летательного аппарата представлял бы собой загадку. Материалы и методы, используемые при его строительстве, двигатели и системы, удерживающие его в воздухе, вычислительные системы и меры управления сложностью, позволяющие автопилоту осуществлять 90 % взлетов и посадок в любую погоду все бы считалось совершенно невозможным. Хотя очевидно, что все это допустимо с точки зрения законов физики (которые не изменились). В 1892 году «Boeing 777» был просто за пределами фантазии и технических возможностей.
В течение последующих 100 лет элементы, в итоге составившие «Boeing 777», были улучшены, доработаны и объединены в эффективное единое целое, сегодня кажущееся будничным делом. Эта инфраструктура в настоящее время настолько развита и настолько хорошо интегрирована, что конструкторы могут сидеть за настольными компьютерами и управлять автоматизированными производственными линиями, разбросанными на территории половины земного шара.
Тем не менее мы до сих пор не до конца понимаем, как на несущих плоскостях создается подъемная сила в турбулентном воздушном потоке. Вместо того чтобы основывать разработки на подробном физическом описании полета, мы удовольствуемся вычислительными алгоритмами из области аэродинамики, данные для которых собраны многократным моделированием. В конечном счете именно на основании этого моделирования мы решаем вопрос о летной годности «Boeing 777». Тем не менее продукты, появляющиеся из авиационной системы «проектирование для промышленного производства», настолько безопасны и хорошо воспроизводимы, что мы регулярно засыпаем практически сразу после взлета. Тот факт, что современная авиация стала элементом повседневности, является впечатляющим ключом к будущему биотехнологии. Хотя это может показаться банальным, будущее заключается в том, чтобы сделать биологическое производство столь же скучным, как современные самолетостроение и самолетовождение.
Преобразование уже идет. Индустрия автоматизации биологического проектирования, аналогичная той, что стоит за современным самолетостроением, сегодня формируется из амбициозных стартапов, разбросанных по нескольким континентам. Основными заказчиками здесь являются крупные фармацевтические и промышленные биотехнологические компании, оказавшиеся неспособными самостоятельно переориентироваться на исследования и разработки в этом направлении. Когда «проектирование для промышленного производства» станет привычным аспектом биоинженерии, мы получим доступ к основополагающей технологии, которая может быть использована для построения почти всего, что мы видим в природе. В будущем границы биотехнологии будут расширяться и выходить далеко за пределы ограниченного списка биологических органов и процессов сегодняшнего дня.
По мере расширения способности манипулирования биологическими процессами наша креативность, чрезмерно ограничиваемая существующими сегодня представлениями, постепенно начнет освобождаться от стереотипов. Что именно мы станем создавать с использованием биологических компонентов, когда преодолеем воображаемые пределы, навязываемые нынешним миропониманием? Намеки на будущее можно разглядеть в другом проекте DARPA, направленном на использование биологии для изменения способа манипулирования неживой материей.
Стандартная синтетическая химия позволила создать целый зоопарк молекул, являющихся строительными блоками современной экономики. Производство многих продуктов сегодня возможно лишь благодаря свойствам молекул, созданных человеком. Синтетическая химия буквально преобразует наш мир, вспомните о пластмассах, покрытиях или катализаторах. Но она может быть использована для изготовления только части тех материалов, которые мы — теоретически — можем себе представить. Например, ферменты могут совершать настоящие химические подвиги, благодаря которым откроется доступ к гораздо большему количеству веществ. DARPA хочет расширить эту возможность и использовать новые комбинации ферментов для производства тысяч материалов, до сих пор никогда не существовавших. Более того, за 100 лет упорного труда мы изучили биохимию достаточно хорошо, и это позволило нам приступить к разработке новых ферментов с новыми возможностями, которые еще больше расширят спектр доступных материалов.
Помимо производства новых веществ, биотехнологии воспринимаются как важные функциональные компоненты систем, ныне производящихся из кремния и металла. В частности, они, скорее всего, изменят способ хранения цифровой информации.
От дисков к ДНК
Интернет расширяется настолько быстро, что наша потребность в архивации данных скоро превзойдет возможности существующих технологий. Если мы продолжим идти по тому же пути, то в ближайшие десятилетия нам понадобится экспоненциально больше не только магнитной ленты, дисков или флеш-памяти, но и фабрик для производства этих носителей, и складов для их хранения. Даже если это технически и осуществимо, то экономически невозможно. Решение может предоставить биология. ДНК — самая сложная и плотная среда хранения информации, с какой мы когда-либо сталкивались; она во много раз превышает даже теоретическую емкость магнитной ленты или твердотельного накопителя.
Обширный склад, полный магнитных лент, может быть заменен ДНК размером с кубик сахара. Что касается времени хранения, то мы нашли нетронутую ДНК в тушах животных, которые провели замороженными в канадской тундре 750 тысяч лет. Следовательно, есть серьезные основания объединить способность читать и писать ДНК с ускоряющейся потребностью в носителе для более длительного хранения информации. И нам уже продемонстрировали кодирование и извлечение текста, фотографий и видео в ДНК.
Правительства и корпорации оценили эту возможность и начали финансировать исследования ускорения синтеза и секвенирования ДНК. Для того чтобы конкурировать с типичным ленточным, «ДНК-привод» должен быть способен записывать и читать эквивалент приблизительно 10 человеческих геномов в минуту, что в настоящее время в 10 раз превышает глобальный ежегодный спрос на синтетическую ДНК. Масштабы спроса на ДНК-устройства и цена, по которой они должны продаваться, полностью изменят экономику чтения и записи генетической информации, сокращая роль теперешних многомиллиардных рынков биотехнологии при одновременном массовом расширении возможностей для перепрограммирования живых существ. Этот вид нетрадиционного использования биотехнологии со временем будет лишь увеличиваться.
Земля, текущая молоком и биоденьгами
Рассмотрим производственный потенциал промышленной ферментации, той точки, где сходятся биология и управление бизнес-процессами. Пивоварение работает технично и экономически грамотно на самых разных уровнях — от транснациональных гигантов, выбрасывающих на рынок миллионы литров напитка в год, до изощренных крафтовых пивоварен, производительность которых в литрах исчисляется тысячами и которые можно встретить в современных городах на каждом углу. Эта промышленная структура свидетельствует о том, что распределенное биологическое производство может успешно конкурировать с централизованным, опровергая идею о том, что масштабная экономика всегда благоприятствует крупным хозяйствам. Более того, интегрированные нефтяные компании жизнеспособны только при капитале в десятки миллиардов долларов, тогда как предприятия, бизнес которых основан на процессе ферментации, могут работать при вложении всего нескольких тысяч.
Путем перепрограммирования биологической части этой производственной платформы мы можем гибко перенацелиться на довольно выгодные рынки. В то время как пиво — это в основном вода стоимостью не более нескольких долларов за литр, бактерии могут производить молекулы стоимостью в десятки тысяч долларов за литр. Из более чем 105 млрд долларов, внесенных промышленными биотехнологиями в экономику США в 2012 году, по крайней мере 66 млрд поступили благодаря ферментированным биохимическим продуктам, которые уже вытесняют с мировых рынков продукты нефтехимии (не включая биоэтанол, доля которого в валовом внутреннем продукте США составила в 2012 г. всего 10 млрд долларов). Еще одним показателем спроса является переход фармацевтической промышленности от химического синтеза даже маломолекулярных препаратов, таких как антибиотики, к биологическому, тем самым экономя деньги и сокращая потоки отходов и выбросы углерода. Растущий спрос на эти возобновляемые химические вещества будет во все большей степени определяться производственными системами, включающими как биологические, так и небиологические компоненты.
Фермеры уже оценили преимущество гибридных подходов в виде роботизированных доильных аппаратов для молочных хозяйств. Сочетание коров и роботов представляет собой интегрированную систему с превосходными производительностью и рентабельностью. Во всем мире работают уже более 25 тысяч таких систем. Коровы быстро научились посещать доильный сарай в наиболее предпочтительное для себя время. Там их здоровье и производительность отслеживаются электронными устройствами, встроенными в специальные воротники — своего рода «коровий Интернет». Важно отметить, что животным эта система тоже выгодна, поскольку им приходится реже посещать ветеринаров и они производят больше молока. Связанные в сеть, коровы кормятся грубыми кормами и перерабатывают их в ценное вещество, которое затем автономно доставляется в централизованные пункты сбора.
Самое главное здесь заключается в том, что, как и в случае пивоварения, автоматизированные молочные фермы представляют собой чрезвычайно производительную, гибкую и распределенную систему. Такая интеграция является результатом многолетней работы, в результате которой производство молока увеличилось почти вдвое, в то время как численность, так сказать, «молочной армии» вдвое сократилась.
Теперь представьте, что эти «избыточные» коровы вместо молока могли бы производить топливо или химикаты, объем этого производства был бы эквивалентен потребностям Америки в возобновляемых видах топлива в 2017 году, или примерно 17 % от общего спроса на бензин в США.
Согласно планам, для строительства сотни (в настоящее время гипотетических) «нефтеперегонных заводов на биотехнологии» потребуется около 170 млрд долларов. Напротив, сегодняшняя стоимость американской «молочной армии» составляет примерно 20 млрд долларов. Если к этой цифре прибавить целых 10 млрд, потраченных на то, чтобы разобраться, как переделать коров для производства топлива и химических веществ, мы бы все равно с запасом опережали исходную сумму более чем на 100 млрд.
Однако затраты на разработку, скорее всего, будут еще ниже, поскольку нам не придется заходить настолько далеко и заниматься биоинженерным преобразованием реальных коров для доставки продукции в роботизированные доильные сараи. Мы уже можем строить системы ферментации, содержащие синтетические бактерии. Последние потребляют сложное органическое сырье и производят ценные и превосходящие нефтепродукты химические вещества. И мы видим надвигающееся будущее автономных роботов, перемещающихся на колесах или с помощью ног. Сочетание этих технологий полностью преобразует способ управления ресурсами и организацию производства.
Привет, коровборг
Представьте себе оснащенных модулями биообработки роботов, которые медленно бродят по лугам или восстановленным высокогорным пастбищам, потребляя различные растительные корма, перерабатывая их в самые разные продукты от топлива и химикатов до фармацевтических препаратов, а затем доставляя их на пункты сбора. Роботы могут выглядеть как коровы или просто как нынешнее автоматизированное спутниковое оборудование для сбора урожая, дополненное бродильными резервуарами. Эти гибридные «коровборги» — в сущности мобильные мини-пивзаводы — будут автономно распределенными платформами биотехнологического производства.
Какой бы ни стала окончательная форма этих созданий, мы будем использовать биологические компоненты, роботов или цифровые компьютеры там, где каждый вид лучше всего соответствует обстановке. Самое главное не в том, что пределы биологии будут расширяться за счет компьютеризации, а в том, что у обеих технологий, вследствие их влияния друг на друга, появятся новые направления.
Если это звучит как фантастика, вспомните, что в этой книге говорится о событиях, которые могут произойти в течение более трех грядущих десятилетий. Поскольку преимущества биотехнологий уже породили массовый спрос, а барьеры на пути к их реализации резко снизились, через 30 лет стоит ожидать, что экономика будет в значительной степени опираться на гибридные устройства, сочетающие в себе искусственно созданные биотические и абиотические части.
Трудно предугадать, как именно будут выглядеть и что конкретно будут делать построенные в будущем артефакты. Но при взгляде вперед важно понимать: ограничения прошлого, не говоря о настоящем, исчезнут. Будущее будет определяться биологией не в том виде, в каком мы ее находим сегодня, а в том, который мы выстроим завтра.
Примечание
Я хотел бы поблагодарить Рика Вебринга, Сару Келлер, Эрика Карлсона, Спенсера Адлера и Стивена Олдрича за плодотворные беседы и сложные вопросы.
Назад: 2. Физические основы будущей технологии
Дальше: 4. За гранью закона Мура