Книга: Всего шесть чисел. Главные силы, формирующие Вселенную
Назад: ЧТО МОЖЕТ БЫТЬ ТЕМНОЙ МАТЕРИЕЙ?
Дальше: СУЖАЕМ ВАРИАНТЫ

ДЕЛО ОБ ЭКЗОТИЧЕСКИХ ЧАСТИЦАХ

Тем не менее есть подозрение, что коричневые карлики или кометы (или даже черные дыры, если считать их останками мертвых звезд) составляют лишь малую часть темной материи. Дело в том, что есть серьезные основания полагать, что темная материя вообще не состоит из обычных атомов. Это предположение связано с дейтерием (тяжелым водородом).
Как уже упоминалось в предыдущей главе, любой дейтерий, который мы наблюдаем, должен был появиться во время Большого взрыва, а не синтезироваться внутри звезд. О его количестве в нашей Вселенной до настоящего времени точно не было известно. Но астрономы нашли спектральный след дейтерия, отличающийся от обычного водорода, в свете, идущем от очень далеких галактик. Для измерений потребовались новые мощные телескопы с зеркалами диаметром 10 м. Наблюдаемое содержание дейтерия является ничтожным: только один атом из 50 000 является атомом дейтерия. Соотношение, которое должно было сохраниться со времен Большого взрыва, зависит от плотности Вселенной, и наблюдения согласуются с теорией, если плотность составляет 0,2 атома водорода на 1 м3. Это в достаточной степени соответствует реальному количеству атомов в светящихся объектах: половина приходится на галактики, а половина – на межгалактический газ, но тогда ничего не остается для объяснения темной материи.
Если существует достаточно атомов, чтобы составить темную материю, которая в пять (а возможно, и в десять раз) больше того, что мы действительно видим, результаты наблюдений перестанут соответствовать теории. Тогда расчеты Большого взрыва будут предсказывать еще меньше дейтерия и несколько больше гелия, чем мы действительно наблюдаем, и происхождение дейтерия во Вселенной станет загадкой. Это говорит нам о важной вещи: атомы во Вселенной, плотность которой составляет 0,2 атома на 1 м3, создают только 4 % критической плотности, а основная масса темной материи состоит из чего-то инертного с точки зрения ядерных реакций. Экзотические частицы, а не обыкновенные атомы, вносят основной вклад в значение числа Ω.
Неуловимые частицы, которые называются нейтрино, – один из кандидатов. У них нет электрического заряда, и они с трудом взаимодействуют с обычными атомами: почти все нейтрино, которые попадают в Землю, проходят сквозь нее насквозь. В течение первых нескольких секунд после Большого взрыва, когда температура достигала 10 млрд градусов, сжатие было столь велико, что реакции, превращающие фотоны (кванты излучения) в нейтрино, были достаточно быстры, чтобы создать равновесие. Следовательно, количество нейтрино, оставшихся от «космического огненного шара», должно быть связано с количеством фотонов. Используя обыкновенные и непротиворечивые законы физики, любой может подсчитать, что соотношение нейтрино к фотонам должно составлять 3 к 11. Сейчас в излучении, оставшемся от Большого взрыва, содержится 412 млн фотонов на 1 м3. Существует три разновидности нейтрино, и в каждом кубическом сантиметре содержится 113 нейтрино каждого вида – другими словами, на каждый атом во Вселенной приходятся сотни миллионов нейтрино. Разумеется, в контексте темной материи важны самые тяжелые из этих трех видов.
Поскольку количество нейтрино значительно превышает количество атомов, они могут быть основной составляющей темной материи, даже если масса каждого из них составляет одну стомиллионную атома. До 1980-х гг. почти все считали, что нейтрино – это частицы с нулевой массой покоя; в таком случае они будут иметь энергию и двигаться со скоростью света, но их гравитационное воздействие не будет играть роли. (Подобным образом фотоны, оставшиеся от начального этапа существования Вселенной, теперь обнаруживаются в реликтовом излучении и не проявляют какого-либо заметного гравитационного воздействия.) Но сейчас считается, что нейтрино могут иметь какую-то массу, хотя и очень маленькую.
Лучшим доказательством того, что нейтрино имеют массу, стал эксперимент «Камиоканде» в Японии. В нем использовали огромный резервуар в форме цилиндра, размещенный в бывшей цинковой шахте. Экспериментаторы изучали нейтрино, идущие от Солнца, где они являются побочным продуктом ядерных реакций в центральной зоне, а также и другие нейтрино, которые генерируются очень быстрыми частицами (космическими лучами), попадающими в верхние слои атмосферы Земли. Эксперименты показали ненулевую массу нейтрино, возможно не такую значительную, чтобы сделать их весомой составляющей темной материи. Тем не менее это было важнейшее открытие, связанное с природой самих нейтрино. С одной стороны, оно заставляет микромир казаться более сложным, с другой – масса нейтрино может предложить новые ключи к разгадке отношений между ними и другими частицами.
По крайней мере, нам известно, что нейтрино существуют, хотя мы по-прежнему точно не знаем их массы. Но есть длинный список гипотетических частиц, которые, возможно, существуют и (если это так) могли выйти из Большого взрыва в достаточном количестве, чтобы внести основной вклад в значение числа Ω. Нет никаких особенно убедительных оснований судить о том, насколько тяжелы могут быть эти частицы. Наилучшие предположения дают значение в сотни раз тяжелее атома водорода. Если бы в Галактике было достаточно таких частиц, чтобы составить темную материю, по соседству с Солнцем их бы насчитывалось по нескольку тысяч на 1 м3. Они бы двигались примерно с той же скоростью, что и средняя звезда в Галактике, – где-то 300 км/с.
Эти частицы, тяжелые, но электрически нейтральные, в основном, как и нейтрино, проходили бы прямо сквозь Землю. Тем не менее их небольшая часть могла бы взаимодействовать с атомами веществ, через которые они проходят. В течение дня происходило бы всего несколько столкновений с каждым из нас (притом что наше тело содержит примерно 1029 атомов). Мы же явно ничего не ощущаем. Однако эксперименты с высокой чувствительностью могут обнаружить очень слабые «удары» или отдачу, возникающую, когда такие столкновения происходят с куском кремния или подобным материалом. Детекторы должны быть охлаждены до очень низкой температуры и размещены глубоко под землей (например, их располагают в шахте в Йоркшире или в туннеле под горами в Италии). Это необходимо, чтобы снизить помехи от других событий, которые могут заглушить подлинные сигналы от соударений с темной материей.
Несколько групп физиков взялись за трудные задачи этой «подземной астрономии». Это тонкая и длительная работа, но, если ученые добьются успеха, они смогут не только узнать, из чего же в основном состоит наша Вселенная, но вдобавок еще и открыть новый важный вид частиц. Только величайший оптимист мог бы положиться на успех этого предприятия, потому что на настоящий момент у нас нет теории относительно частиц темной материи, следовательно, очень трудно найти оптимальный путь поиска.
Сейчас рассматривается и множество других кандидатов, которые могут составлять темную материю. Некоторые физики-теоретики предпочитают версию о еще более легкой частице, которая называется аксионом. Другие предполагают, что эти частицы могут быть в миллиард раз тяжелее, чем те, которые ищут сейчас (в этом случае они должны встречаться в миллиард раз реже, что делает поиск еще более трудным). Или они могли бы быть куда более экзотическими – например, черные дыры размером с атом, созданные под огромным давлением первоначальной Вселенной.
Назад: ЧТО МОЖЕТ БЫТЬ ТЕМНОЙ МАТЕРИЕЙ?
Дальше: СУЖАЕМ ВАРИАНТЫ