Книга: Всего шесть чисел. Главные силы, формирующие Вселенную
Назад: ЗАГЛЯДЫВАЯ В ПРОШЛОЕ
Дальше: ЯДЕРНЫЕ РЕАКЦИИ БОЛЬШОГО ВЗРЫВА

ДО ГАЛАКТИК

А что было в те еще более ранние эпохи, до того как начали формироваться галактики? Лучшее доказательство тому, что вначале все находилось в сверхсжатом состоянии, – это то, что межгалактическое пространство не является абсолютно холодным. Тепло, которое в нем присутствует, – «остаточное свечение творения» – обнаруживается как микроволновое излучение, то самое, что подогревает блюда в микроволновке, но гораздо слабее. Первое обнаружение космического фонового микроволнового излучения в 1965 г. было самым важным событием в космологии со времен открытия расширения Вселенной. Более поздние измерения подтвердили, что реликтовое излучение имело отличительную черту: его интенсивность на различных длинах волн, представленная в виде графика, соответствует спектру теплового равновесного излучения того, что физики называют «абсолютно черным телом». Так выглядит температурная кривая, когда излучение приходит в равновесие с окружающей средой (как это происходит глубоко внутри звезды или плавильного горна, который сильно нагревали в течение длительного времени). Именно этого можно ожидать, если реликтовое излучение действительно является остатками «огненного шара», когда вся Вселенная была раскаленной, плотной и непроницаемой.
К настоящему времени самые точные измерения были проведены в 1990-е гг. с помощью спутника NASA COBE. Когда экспериментаторы представляют свои результаты, они обычно изображают на графике «планки погрешностей», которые указывают на степень неуверенности в результатах, но для информации, полученной COBE, таких планок не могло быть, потому что они были бы короче, чем толщина кривой. Это действительно историческое измерение с точностью до одной десятитысячной убедительно подтвердило, что все в нашей Вселенной – в том числе все вещество, из которого состоят галактики, – когда-то было горячим газом с температурой выше, чем в ядре Солнца.
Сегодня средняя температура Вселенной составляет 2,728 градуса выше абсолютного нуля. Это, конечно, очень холодно (около –270 °С), но существует четкое понимание того, почему межгалактическое пространство по-прежнему содержит много тепла. Каждый м3 вмещает 412 млн квантов излучения или фотонов. Для сравнения: средняя плотность атомов во Вселенной составляет примерно 0,2 на 1 м3. Это последнее число известно нам с меньшей точностью, поскольку мы не уверены, сколько атомов может быть в рассеянном газе или темной материи, но, по всей видимости, на каждый атом во Вселенной приходится около 2 млрд фотонов. Во время расширения Вселенной падает и плотность атомов, и плотность фотонов. Но падает она равномерно, поэтому соотношение атомов и фотонов остается прежним. Поскольку отношение «тепла к материи» так велико, о первоначальной Вселенной часто говорят как о горячем Большом взрыве.
Первичные горячие фазы продолжались недолго. Температура превышала миллиард градусов всего несколько минут. Примерно через полмиллиона лет она уменьшилась до 3000 °C – Вселенная стала чуть прохладнее поверхности Солнца, что явилось важным этапом процесса расширения. Перед этим все было таким горячим, что электроны были оторваны от ядер и двигались свободно. По мере снижения температуры они достаточно замедлились, чтобы присоединиться к ядрам; таким образом сформировались нейтральные атомы. Эти атомы не могли рассеивать тепло так эффективно, как свободные электроны на более ранних и более горячих стадиях. В течение последующего периода материя стала прозрачной; «туман» рассеялся. Во время расширения температура, в свою очередь, падала обратно пропорционально увеличению масштаба Вселенной (увеличению длины штырей в решетке Эшера). Реликтовое излучение, регистрируемое COBE, является следом той эпохи, когда наша Вселенная была сжата более чем в тысячу раз по сравнению с сегодняшним днем – при температуре 3000 °K вместо сегодняшних 2,7 °K и задолго до того, как появились галактики. Интенсивное излучение первоначального шара хотя и ослабело из-за расширения, но все еще наполняло всю Вселенную.
Часто используемая аналогия со взрывом вводит в заблуждение, поскольку создает представление о том, что Большой взрыв произошел в каком-то особом месте. Но, насколько мы можем судить, любой наблюдатель, находись он на Земле, в Туманности Андромеды или в самых далеких от нас галактиках, увидел бы одну и ту же модель расширения. Возможно, когда-то Вселенная и была сжата в одну-единственную точку, но у каждого есть равное право заявлять о том, что все началось именно с этой точки. Мы не можем соотнести источник расширения с каким-либо определенным местом в нынешней Вселенной.
Также неверно думать, что в первоначальной Вселенной расширение происходило из-за высокого давления. Взрыв вызывается нарушением равновесия давления; бомбы на Земле и сверхновые в космосе взрываются, потому что резкий перепад давления вышвыривает осколки в область низкого давления. Но в первоначальной Вселенной давление везде было одинаковым: не было никакой границы или внешней области. Первичный газ охладился и рассеялся, как это происходит с содержимым растягивающейся коробки. Дополнительное притяжение, возникшее из-за давления и энергии тепла, на самом деле замедляло расширение.
Такая картина достаточно логична, но остаются еще некоторые тайны. Прежде всего (если помнить о разнице со взрывом), она не дает объяснения тому, почему вообще происходит расширение. Стандартная теория Большого взрыва просто принимает без доказательств, что все началось в тот момент, когда был достигнут достаточный для расширения уровень энергии. Ответ на вопрос, почему расширение вообще происходит, должен скрываться на еще более ранних стадиях, относительно которых у нас нет таких же прямых доказательств, как нет и уверенного понимания физических процессов.
Название «Большой взрыв» было придумано в 1950-е гг. известным физиком-теоретиком из Кембриджа Фредом Хойлом (уже упомянутым в главе 4 в связи с открытием происхождения углерода) как насмешливое описание теории, которая ему не нравилась. Сам Хойл предпочитал теорию «стационарного состояния» Вселенной, в которой по мере расширения, чтобы заполнить возникающие пустоты, постоянно создаются новые атомы и новые галактики и, таким образом, в среднем параметры никогда не меняются. В то время в любом случае никаких доказательств быть не могло, и космология была областью кабинетных размышлений, потому что наблюдения не продвинулись достаточно далеко, чтобы эволюция Вселенной смогла себя проявить. Но теория стационарной Вселенной «вышла из моды», как только появились свидетельства того, что в прошлом Вселенная действительно была иной. Хотя и выяснилось, что стационарная теория неверна, но она была «хорошей» теорией с точки зрения очень четких и экспериментально проверяемых предсказаний. Она стала великолепным стимулом для науки, побудив наблюдателей довести свои приборы до предела возможностей. (В этом смысле «плохой» является та теория, которая так гибка, что может приспособиться к любым новым данным. Выдающийся – и очень самонадеянный – физик Вольфганг Паули говорил о подобных расплывчатых идеях: «Это даже не является ложным!») Сам Хойл так никогда полностью и не принял теорию Большого взрыва, хотя и придумал компромиссную модель, которую коллеги-скептики называли «Стационарным взрывом».
Назад: ЗАГЛЯДЫВАЯ В ПРОШЛОЕ
Дальше: ЯДЕРНЫЕ РЕАКЦИИ БОЛЬШОГО ВЗРЫВА