Книга: Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной
Назад: Глава 8 За пределами относительности
Дальше: Теория всего и теория струн

Странная парочка

Наступит день, когда два столпа современной физики сольются вместе. Общая теория относительности и квантовая механика порознь добились впечатляющих успехов, но по-прежнему кажутся несовместимыми. Стандартная модель физики элементарных частиц в квантово-механической интерпретации описывает большинство фундаментальных сил природы в терминологии порхающих частиц, в то время как теория относительности описывает гравитацию в совершенно другой терминологии, используя искривленное пространство-время.

 

Столпы сталкиваются и на других перекрестках. Когда мы оказываемся в ситуации, где обе теории становятся одинаково важны, например на горизонте событий черной дыры, работать вместе они отказываются (см. главу 3). Квантовая теория гравитации представляется необходимой при изучении первых моментов после Большого взрыва и, возможно, для понимания природы пространства и времени. Но квантовая гравитация поставила нас в тупик. Производительность труда самого Эйнштейна резко упала в последние годы, когда он занялся поисками теории всего.
Чтобы понять проблему, следует начать с фундаментальных основ квантовой физики. Принцип неопределенности Гейзенберга воплощает в себе «расплывчатость» квантового мира. Он позволяет частицам брать в займы энергию из пустого пространства и появляться из ниоткуда в виде короткоживущих «виртуальных» частиц. Они должны вернуть одолженную энергию путем своего исчезновения – и чем больше они взяли, тем быстрее они должны исчезнуть.

 

 

Рис. 8.1. Бесконечная проблема: гравитоны – предполагаемые квантовые частицы гравитации, но теории, в которых они участвуют, оказываются весьма строптивыми

 

Представьте себе электрон, фотон или любую другую частицу, которая набрала один за другим множество таких «беспроцентных кредитов». В результате расчет даже простого квантового процесса (например, пролет электрона слева направо) становится чрезвычайно сложным. По словам физика Ричарда Фейнмана (1918–1988), мы должны «суммировать все возможные истории», принимая в расчет бесконечное разнообразие способов возникновения виртуальных частиц (рис. 8.1).
Квантовая электродинамика
Иногда при таком суммировании получается конечный результат: теория делает предсказание, которое может быть проверено. Например, квантовая электродинамика хорошо описывает движение электрона. Но в ряде случаев сумма резко возрастает, и вы уходите в бесконечность. История применения квантовой теории к силам природы есть история о том, как приходится бороться с этими непокорными бесконечностями.
Один из примеров такой борьбы – анализ бета-распада, когда нейтрон спонтанно испускает электрон и нейтрино, превращаясь в протон. Квантовая теория бета-распада заводила физиков в тупик бесконечностей, пока они не разработали «электрослабую» теорию, которая объединила электромагнитные и слабые ядерные взаимодействия. Теория электрослабого взаимодействия обуздала математический аппарат, добавив гипотетические массивные частицы, такие как W-бозоны, Z-бозоны и бозоны Хиггса. С их помощью удалось справиться с бесконечностями. Фортуна благоприятствовала смелой догадке: W– и Z-бозоны были открыты в ЦЕРНе в 1983 году, а бозоны Хиггса – в 2012 году. Этот успех вдохновил многих физиков, и они поверили в то, что такая стратегия является чуть ли не универсальным рецептом при разработке квантовых теорий: если ваша модель приводит к бесконечностям, просто добавьте новые частицы, и задача будет решена.
Предположим теперь, что так же как свет состоит из фотонов, гравитация есть совокупность квантовых частиц, называемых гравитонами. В соответствии с принципом неопределенности гравитоны заимствуют энергию для создания других, виртуальных гравитонов, и когда мы начинаем суммировать все возможные истории, наши вычисления быстро, как и ожидалось, закручиваются по спирали, уводя нас в хаос бесконечностей. Но если мы попытаемся покорить бесконечности, добавляя новые частицы, то ничего не получится, потому что потребуется ввести частицу с массой, равной 10 миллиардам миллиардов массы протона. Как обычно, чем больше энергии одалживаешь, тем быстрее ее приходится отдавать, т. е. такие частицы живут очень недолго. Значит, далеко им не уйти, и они будут тесниться в крошечном объеме пространства.
Но общая теория относительности говорит, что масса искривляет пространство-время. Сконцентрируйте достаточно большую массу в малом объеме, и перед вами возникнет черная дыра. Именно такой облик принимает наша новая частица: микроскопическая черная дыра, содержащая сингулярность с бесконечной плотностью и бесконечной кривизной в пространстве-времени. Природа играет с нами злую шутку: стремление избавиться от одной бесконечности создает другую.
Попытки обойти это препятствие привели нас к созданию теории струн, в которой предполагается, что все частицы являются воплощением более фундаментальных структур, а именно, колеблющихся струн. Когда мы начинаем суммировать все возможные истории таких «распушенных» объектов, неприятные бесконечности, рожденные виртуальными частицами, исчезают как по волшебству (см. «Теория всего и теория струн» ниже). Другая идея – петлевая квантовая гравитация, которая предлагает разрубить пространство-время на дискретные блоки. Такая разбивка предполагает ограничение верхнего лимита энергии, которую может одалживать частица, и вычисления вновь приобретают конечный характер.
Эти две кандидатуры на роль всеобщей теории во многих отношениях представляют собой наиболее консервативные продолжения существующих моделей: обе пытаются сохранить, насколько это возможно, теоретические основы квантовой механики и общей теории относительности. А как насчет более эзотерических идей, изменяющих существующие правила игры? Например, если снова разъединить пространство-время и рассматривать их отдельно, как это было раньше, то это создаст пространство для маневра (см. «Гравитация Хоравы» далее в этой главе). Можем ли мы достичь прогресса, отказавшись от краеугольного камня общей теории относительности – принципа эквивалентности? (См. «По-разному одинаковые» далее в этой главе.) Или мы должны более кардинально поменять наши взгляды и попытаться объяснить природу реальности с помощью отвлеченных чисел?
И теория относительности, и квантовая механика так хорошо согласуются с реальностью, каждая в своей области, что очень трудно придумать что-нибудь лучше. Но мало кто из физиков задумывается о еще более радикальной возможности, а именно, что квантовая механика и общая теория относительности не могут быть объединены, и реальность не имеет единого, согласованного и логического обоснования.
Назад: Глава 8 За пределами относительности
Дальше: Теория всего и теория струн