Книга: Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной
Назад: Что такое темная материя?
Дальше: Глава 7 Темная энергия

Странно знакомые

Придумывание новых частиц для объяснения недостающей массы Вселенной завело нас в никуда. Быть может, темная материя – это хорошо замаскированная обычная материя?

 

В июле 2015 года неожиданная гостья посетила Большой адронный коллайдер ЦЕРНа. Названная пентакварком, эта необычная частица представляет собой совершенно новый способ собрать воедино основные строительные кирпичики вещества. Это событие прозвучало приятной мелодией для ушей Гленна Старкмана, физика-теоретика из Университета Кейс Вестерн Резерв в Кливленде (штат Огайо, США). Он выдвинул смелую идею: во Вселенной существуют другие разновидности обычной материи, и их вполне достаточно, чтобы сыграть роль неуловимой темной материи.
Чтобы сформировать материю, которая нас окружает, элементарные частицы собираются в определенные стандартные конфигурации. Кварки группируются по трое и образуют составные частицы, известные как барионы, в том числе протоны и нейтроны, входящие в состав атомных ядер. Нам также известны эфемерные комбинации кварка и антикварка, называемые мезонами.
Но кварки – создания изворотливые и из-за особенностей связывающего их сильного ядерного взаимодействия в одиночку по Вселенной не плавают. Когда расстояние между кварками мало, эта связывающая сила слаба. Но как только расстояние возрастает, сила увеличивается, притягивая кварки друг к другу. Сильное взаимодействие зависит и от других причин, и физики настойчиво стараются понять в деталях, как кварки образуют мезоны и барионы.
Странные кварки
Эта неопределенность привела к предположениям, что могут существовать другие формы материи. Еще в начале 1980-х годов физик и математик Эдвард Виттен из Принстонского университета предположил, что легкие кварки могут вступать в необычные комбинации со своими более тяжелыми «двоюродными братьями», такими как странные кварки (рис. 6.4). Эти кварки могут вырастать в большие аморфные пузыри, собирая все больше и больше новых частиц в небольшом объеме. Виттен назвал их «кварковые самородками». Брайан Линн, физик-теоретик из Университетского колледжа Лондона, и его коллеги позднее распространили эту гипотезу для объяснения других структур, таких как «странная барионная материя» и «хиральные жидкие капли».

 

Рис. 6.4. В обычном веществе связано 2–3 кварка. Сверхмассивные частицы, состоящие из множества кварков, могли бы претендовать на роль неуловимой темной материи

 

Такие экзотические сгустки из знакомых нам элементарных частиц будут плотными, как нейтронные звезды – одна чайная ложка вещества, из которого они состоят, весит столько же, сколько приличная по размерам гора. Исследователи назвали их «макросы»; их масса, если они обнаружатся, будет измеряться не теми ничтожно малыми величинами, как у обычных элементарных частиц, а килограммами и тоннами. Макросы не должны вступать в реакции ядерного синтеза и поэтому не должны светиться. Они слишком малы и практически не должны отражать или поглощать какой бы то ни было свет. Можно сказать, что это частицы-невидимки.
Исходя из этих предположений, можно подумать, что найден идеальный кандидат на роль темной материи. Тем не менее физики скептически отнеслись к этой идее. На это есть две причины:
1. Если макросы являются компактными объектами наподобие коричневых карликов или черных дыр и по массе сравнимы с Солнцем, тогда их должно быть больше, чем видимых звезд. Только в этом случае они смогут быть ответственными за те эффекты, которые сейчас традиционно объясняются темной материей. Но тогда макросы отклоняли бы свет, идущий к Земле от звезд, то есть создавали бы эффект гравитационного линзирования.
2. Если бы ядерное вещество распределялось тонким «ковром» по всей Вселенной, оно взаимодействовало бы с самим собой и другим веществом, затрудняя процесс образования галактик в том виде, в как мы его знаем.
Ответ Старкмана на эти возражения заключается в следующем. Макросы вовсе не обязаны иметь слишком большую массу и повсеместно приводить к эффекту гравитационного линзирования; не должны они и «размазываться» тонким слоем повсюду, вступая во взаимодействие с чем попало. Они могут группироваться в шариках среднего размера, ни слишком больших, ни слишком маленьких, что вполне согласуется с существующими космологическими наблюдениями.
Частицы, рожденные в космосе
Вооруженные этой идеей, Старкман с коллегами принялись за поиски макросов средних размеров. Вначале они попытались понять, где могли появляться макросы с разрешенной наименьшей массой. Может быть, они оставили свой след в минералах, погребенных в недрах Земли, или на пластиковых щитах космической станции «Скайлэб», установленных специально для поимки рожденных в космосе частиц? Так и не найдя нигде ожидаемых сигналов, Старкман сделал вывод, что разрешенные массы макросов должны находиться в диапазоне от 50 граммов до массы горы Эверест.
Ученый Дэвид Джейкобс из Кейптаунского университета в Южной Африке, работающий над проектом вместе со Старкманом, надеется «услышать», как макросы пролетают в океане. Для этого он использует гидрофоны, которые применяются для изучения повадок китов или для отслеживания незаконно проводимых ядерных испытаний. Кроме того, в поисках макросов он планирует исследовать данные детекторов космических лучей: влетая в атмосферу Земли, макросы должны рождать характерный световой сигнал.
Но удача может улыбнуться и немного дальше от дома. Последняя экспедиция «Аполлона» оставила на Луне четыре сейсмометра. Среди прочего они могут зафиксировать и следы макросов. Эти сейсмометры достаточно примитивны; геологи-планетологи вынашивают планы по замене их на более совершенные приборы. Брюс Банердт из Лаборатории реактивного движения НАСА в Пасадене (штат Калифорния, США) и его коллеги хотят установить на Луне более чувствительную сеть лунных сейсмографов.
Открытие этих мельчайших эффектов имело бы грандиозное значение. Может оказаться, что экзотические частицы, выдуманные физиками и являющиеся предметом их интенсивного поиска, просто не существуют, а обычные элементарные частицы, которые мы знаем и любим, могут сочетаться друг с другом самым причудливым образом.
К чему может привести охота за темной материей?
Охотники за темной материей находятся на распутье в поисках ответа на вопрос: «Что же такое и как это работает?» До сих пор не существует никаких конкретных фактов, одни догадки и предположения.
Но вскоре положение дел может измениться. Важного прорыва можно ожидать с разных научных фронтов, ведь прямыми поисками темной материи занимаются в глубоких шахтах, а косвенно к ее открытию могут привести открытия, сделанные на космических телескопах или на Большом адронном коллайдере. Действительно ли участники экспериментов CoGeNT и DAMA/LIBRA обнаружили частицы темной материи? Может быть, темная материя рождает те гамма-лучи из центра нашей Галактики, которые наблюдал космический телескоп Ферми? Единого мнения по этому вопросу пока не существует, но время и новые научные данные все расставят по своим местам.
Если темная материя на самом деле состоит из слабо взаимодействующих массивных частиц, похожих на частицы, предсказываемые теорией суперсимметрии, успех не за горами. С другой стороны, если за ближайшие 10 лет не удастся обнаружить подобные сигналы, то ученым придется расстаться со своими гипотезами о темной материи и создавать новые. Возможно, темная материя полностью инертна и вообще не взаимодействует с обычным веществом. Если это так, ее никогда не удастся обнаружить, какие бы эксперименты ни придумывали физики. Такой исход – самый большой кошмар для всех охотников за темной материей.
Интервью: поиски «луча» темного света
Есть ли у темной материи свои собственные «темные силы»? Единственный способ найти их – объявить на них охоту, говорит Тим Нельсон, физик из Национальной ускорительной лаборатории SLAC (Stanford Linear Accelerator Center) в Менло-Парк (штат Калифорния, США).

 

Почему вы думаете, что существует пятая сила?
Мы хорошо знаем о четырех фундаментальных силах в физике, ответственных за гравитационное, электромагнитное, сильное ядерное и слабое ядерное взаимодействие. Но по-прежнему существует шанс, что есть еще одна сила, которую мы пока еще не замечаем, возможно, потому, что она слишком слабая. Долгое время ученые стремились найти эту новую силу. В настоящее время основной целью является поиск таких сил, которые действуют в основном на темную материю. Я вдохновлен такой идеей: точно таким же образом, как нормальная материя состоит из частиц, на которые действуют различные силы, темная материя представляет собой самую легкую и наиболее стабильную составляющую еще не открытого «темного сектора» частиц и сил.

 

Каковы причины полагать, что этот темный сектор существует?
У нас все больше оснований так считать. Мы знаем, что темная материя существует и что она взаимодействует гравитационно – иными словами, обладает массой – и что значительное количество ее воплощено в частицах особого типа. Ученые ухватились за идею, что темная материя в основном состоит из частиц, называемых слабо взаимодействующими массивными частицами. Но поиски этих частиц, например с помощью подземных детекторов и Большого адронного коллайдера, ни к чему не привели, и мы покидаем те апартаменты, где мы могли бы их обнаружить. Тогда, если темная материя – это не просто слабо взаимодействующие массивные частицы, то остается вероятность того, что это различные типы темных частиц, взаимодействующих друг с другом с помощью особого набора своих собственных сил.

 

Означает ли это, что темная материя может быть весьма разнородной?
Да. Стандартная модель физики элементарных частиц оперирует со множеством частиц, включая фотон, который является переносчиком электромагнитного взаимодействия. Эта обычная материя составляет только одну шестую часть всего вещества во Вселенной. Все остальное – темная материя, так почему бы ей не быть разнородной? Если вы откроете эту концептуальную дверь, перед вами откроются врата новых возможностей. Но с чего-то надо начинать, и давайте рассмотрим самый простой на данный момент вариант: «темная сила» аналогична электромагнетизму. Отсюда появляется термин «темные фотоны».

 

И как вы собираетесь охотиться за темными фотонами?
Согласно теории темные фотоны смешиваются с обычными фотонами в процессе, который называется кинетическим смешиванием. Это означает, что темный фотон может превратиться в обычный, и наоборот. Но, скорее всего, это происходит очень-очень редко. Итак, в принципе, если вы проводите эксперимент, в котором выделяется много высокоэнергетических фотонов, вы также получите некоторое незначительное количество темных фотонов.

 

Как можно выделить темные фотоны?
Темные фотоны не могут быть безмассовыми, как обычные. Если бы они были безмассовыми, это противоречило бы нашему пониманию того, как ведет себя темная материя. Фактически они могут иметь массы в широком диапазоне. Это означает, что хотя мы и не можем непосредственно увидеть темные фотоны, мы можем охотиться за ними так же, как и за всеми частицами, которые имеют массу.

 

Вы уже работаете над этим?
Да, в нашем эксперименте «Поиск тяжелых фотонов» в лаборатории Джефферсона (Thomas Jefferson National Accelerator Facility) мы используем пучок электронов с высокой энергией, облучая им вольфрамовую фольгу. Когда электроны внезапно сталкиваются с препятствием, мы получаем тормозное излучение. Тормозное излучение – это в основном поток фотонов, и, если темные фотоны существуют, они также будут присутствовать в этом излучении, но в гораздо меньшем количестве. Что случится потом, зависит от того, являются ли темные фотоны самыми легкими частицами «темного сектора». Наш эксперимент предполагает, что это так и есть, а это означает, что они должны распадаться в результате кинетического смешивания с образованием частиц обычной материи, таких как электрон-позитронные пары. А их мы можем обнаружить.

 

А если темные фотоны тяжелее, чем вы думаете?
Мы предполагаем, что основная часть темной материи состоит из ее самых легких частиц. Если же темный фотон не является самой легкой частицей «темного сектора», то вместо того, чтобы распадаться с образованием обычного вещества, он с таким же успехом останется после распада в царстве темной материи. Это значит, что мы не увидим его в наших экспериментах, но это приведет к некоторым интересным возможностям. Если я проведу эксперимент с толстой вольфрамовой мишенью и создам пучок темных фотонов, которые будут двигаться достаточно быстро, а они распадутся с образованием частиц темной материи, это будет означать, что я создал пучок частиц темной материи. Мы потеряем способность обнаруживать темные фотоны, но приобретем способность обнаруживать саму темную материю. Беспроигрышный вариант.

 

Расскажите нам еще немного о пучке темной материи.
Самое замечательное в этом то, что такой пучок будет давать частицы темной материи с высокой энергией. Эксперименты по непосредственному обнаружению темной материи, такие как LUX и CDMS, призваны открыть темную материю, бороздящую нашу Галактику на относительно низких скоростях. Когда частицы темной материи ударяются о детектор, они добавляют очень маленькое количество энергии, которое нам очень трудно зафиксировать. Вот почему нам приходится помещать наши детекторы в глубокие шахты – окружающая почва надежно экранирует их от помех. Но если бы у меня был высокоэнергетический пучок темной материи, я мог бы его направить на стандартный детектор элементарных частиц.

 

Что будет означать для человечества реальное обнаружение темной материи?
Это будет сродни астрономической революции Коперника – еще одно подтверждение того, что мы не в центре Вселенной, и то, что мы принимаем за всю Вселенную, всего-навсего ее маленький ломтик. Одно дело – понимать это умом, как сейчас, и совсем другое – встретиться с этим открытием лицом к лицу.
Назад: Что такое темная материя?
Дальше: Глава 7 Темная энергия