Книга: Страх физики. Сферический конь в вакууме
Назад: Глава 3. ТВОРЧЕСКИЙ ПЛАГИАТ
Дальше: Часть третья 1. ПРИНЦИПЫ

Глава 4.
СКРЫТАЯ РЕАЛЬНОСТЬ

Мы не оставим поиск,
Мы придём в конце
В то место, из которого ушли, —
Но место не узнаем.

Томас Стернз Элиот, «Четыре квартета, Литтл Гиддинг» (Перевод В. И. Постникова) 
Вы просыпаетесь однажды морозным утром и смотрите в окно, но не узнаёте знакомый пейзаж. Мир полон нечётких узоров. В какой-то момент вы вдруг осознаёте, что смотрите на морозный узор на стекле, причудливым образом преломляющий и рассеивающий солнечный свет.
Психологи называют это ага-переживанием. У мистиков, вероятно, имеется для него другое название. Внезапное изменение мира, этот новый гештальт, когда разрозненные, на первый взгляд, факты соединяются вместе, чтобы сформировать новую картину, заставляя вас увидеть старые вещи в совершенно новом свете, играет важнейшую роль в развитии физики. В какой-то момент, возвращаясь к уже давно решённой задаче, мы обнаруживаем что-то, на что раньше не обращали внимания: новый пласт, скрываемый под покровом обманчивой простоты, новые связи между, казалось бы, не связанными друг с другом вещами.
Все важнейшие достижения в физике XX века обязаны именно таким озарениям: от поразительных открытий Эйнштейна, касающихся пространства, времени и устройства Вселенной, до моделирования процесса кипения овсяной каши. При обсуждении этой «скрытой реальности» я не хотел бы увязнуть в философских спорах о совершенстве и бесконечности природы. Дискуссии подобного рода лишь укрепляют меня в моём отношении к философии, которое лучше всего сформулировал один из крупнейших философов XX века Людвиг Витгенштейн: «Большинство предложений и вопросов, трактуемых как философские, не ложны, а бессмысленны».
Платоновский вопрос о существовании объективной реальности, не зависящей от наших возможностей её ощущать, можно обсуждать бесконечно. Тем не менее мне хотелось бы воспользоваться аллегорией платоновской пещеры, отчасти чтобы показать, какой я начитанный, но в основном потому, что она очень удобна для популяризации некоторых важных идей.
Платон сравнивал наше место в Великом порядке вещей с положением человека, живущего в пещере и имеющего возможность наблюдать только тени, отбрасываемые реальными предметами на её стены. Он утверждал, что мы, подобно такому человеку, обречены лишь слегка «скрести» по поверхности реальности, поскольку наши органы чувств ограниченны и не позволяют проникнуть вглубь природы вещей.
Можно представить себе трудности, с которыми сталкивается платоновский пещерный человек. Тени дают ему, в лучшем случае, плоскую проекцию реального мира. Но иногда на исследователя находит неожиданное озарение. Предположим, что каждым воскресным вечером перед закатом солнца он видит на стене пещеры тень следующей формы:
А вечером каждого понедельника тень выглядит так:
Несмотря на то что наблюдаемая в понедельник тень подозрительно похожа на тень сферического коня, человек подозревает, что на самом деле не всё так просто. Неделю за неделей одни и те же тени появляются на стене пещеры с регулярностью хорошего часового механизма. Наконец, в один из понедельников наш троглодит просыпается раньше обычного и слышит звук разворачивающегося грузовика и звон металла. Обладая незаурядной силой воображения и хорошими математическими способностями, он внезапно понимает, что эти тени принадлежат не разным, а одному и тому же предмету! Добавив в свою картину мира новое измерение, узник пещеры представляет себе цилиндрический мусорный контейнер:
В воскресенье вечером контейнер стоит вертикально и отбрасывает на стену пещеры прямоугольную тень. В понедельник, будучи опрокинутым набок, тот же контейнер отбрасывает круглую тень. Трёхмерный объект, рассматриваемый с разных сторон, может иметь различные двухмерные проекции. Пережив подобный инсайт, наш герой оказывается счастлив вдвойне: мало того, что он решил головоломку с формой теней, так он ещё и обрёл понимание, что различные явления могут быть различными проявлениями одной и той же сущности.
Развитие физики не происходит по принципу: «чем дальше в лес, тем больше дров» — более сложные выводы не всегда следуют из более простых предпосылок. Чаще всего новые открытия являются отражением внезапных озарений, приводящих к смене точки зрения, как в примере выше. Иногда скрытая реальность обнажается при объединении разнородных идей, что приводит к появлению одной теории вместо прежних двух. А иногда независимые ранее физические величины обнаруживают тесную связь, открывая новые горизонты исследований.
Одно такое соединение разнородных, как ранее представлялось, явлений ознаменовало начало эры современной физики, когда Джеймс Клерк Максвелл представил миру свою теорию электромагнетизма, а вместе с ней и объяснение природы света. Вполне логично, что первым творением Бога, по Библии, был свет. Со света началась и история современной физики. Странное поведение света заставило Эйнштейна задуматься о новых отношениях между пространством и временем. Тот же свет, а именно необъяснимое с позиций классической физики явление фотоэффекта привело к появлению квантовой механики. Наконец, квантовая механика в середине XX века легла в основу нашего нынешнего представления о природе всех известных в природе сил, в том числе в основу объединения электромагнитного и слабого взаимодействия. Понимание природы света родилось из предположения, что две очень разные силы — электрическая и магнитная — на самом деле представляют собой две стороны одного явления.
Я уже рассказывал об истории открытия Фарадеем и Генри связи между электричеством и магнетизмом, но мне кажется, эта история не раскрывает всю глубину этой связи так, как мне бы хотелось. Поэтому я предлагаю провести мысленный эксперимент, показывающий, что электричество и магнетизм это одно и то же. Насколько я знаю, этот мысленный эксперимент никогда не ставился, если можно так сказать о мысленном эксперименте, до фактического открытия связи между электричеством и магнетизмом, хотя в ретроспективе он выглядит очень простым.
Мысленные эксперименты являются неотъемлемой частью работы физиков, потому что они позволяют одновременно «наблюдать» явления с разных точек зрения. Вспомните классический фильм Акиры Куросавы «Расёмон», в котором одно и то же событие интерпретировалось каждым из свидетелей по-своему, но каждая из точек зрения дополняла общую картину, давая ключ к восстановлению объективной истины. Поскольку один наблюдатель не может обладать двумя точками зрения на наблюдаемое событие, физики используют стандартную схему мысленного эксперимента с несколькими независимыми наблюдателями, придуманную ещё Галилеем и доведённую до совершенства Эйнштейном.
Для постановки этого мысленного эксперимента нам необходимо знать два факта. Во-первых, единственной силой, помимо гравитации, которую «чувствует» заряженная частица, находящаяся в состоянии покоя, является кулоновская сила электростатического притяжения или отталкивания. Вы можете поместить сильный магнит рядом с покоящейся частицей, но она ничего «не заметит». Во-вторых, если частица движется в магнитном поле, она испытывает силу, стремящуюся изменить направление её движения. Эта сила называется силой Лоренца — в честь голландского физика Генриха Лоренца, ближе всех предшественников Эйнштейна подошедшего к созданию специальной теории относительности. Эта сила обладает весьма своеобразным поведением. Если заряженная частица движется горизонтально между полюсами магнита, как показано на следующем рисунке, сила Лоренца действует на неё перпендикулярно направлению движения.
Этих двух фактов достаточно, чтобы прийти к выводу, что кулоновская сила для одного наблюдателя является силой Лоренца для другого, а электричество и магнетизм тесно связаны друг с другом, как круг и прямоугольник на стене пещеры. Посмотрим ещё раз на предыдущий рисунок. Неподвижный наблюдатель видит покоящийся магнит и движущуюся частицу, на которую действует магнитная сила Лоренца.
А теперь представьте себя на месте наблюдателя, движущегося вместе с частицей. В этом случае частица будет по отношению к вам неподвижна, а двигаться будет магнит, и вы увидите следующую картину:
Поскольку покоящаяся заряженная частица может «чувствовать» только электрическую кулоновскую силу, то сила, действующая на частицу, с его точки зрения, должна быть электрической. Кроме того, согласно принципу относительности Галилея законы физики не должны различаться для двух наблюдателей, движущихся друг относительно друга с постоянной скоростью. Согласно этому принципу, у нас нет никакой возможности определить, что на самом деле движется, а что покоится: частица или магнит. Всё, что мы можем сказать, это то, что магнит и частица движутся относительно друг друга.
Но мы только что заключили, что в случае покоящегося магнита и движущейся частицы на последнюю должна действовать сила Лоренца, отклоняющая частицу вверх. В случае же, когда частица покоится, сила, действующая на неё, должна быть электрической. Откуда она берётся? Видимо, с точки зрения второго наблюдателя, именно так проявляет себя магнитная сила, которую фиксирует первый наблюдатель, то есть электричество и магнетизм проявляют себя как различные «тени» одной и той же электромагнитной силы!
Вернёмся теперь в сегодняшний день и посмотрим, как в свете вышеизложенных принципов выглядят последние достижения современной физики. Когда я рассказывал об удивительной связи между сверхпроводниками и суперколлайдерами, я говорил, что происхождение масс элементарных частиц может быть связано с их взаимодействием с глобальным морем виртуальных частиц, которое «тормозит» их, создавая такой же эффект, как наличие массы в классической механике. Я также говорил, что то же самое происходит со светом в сверхпроводнике. Если бы мы жили внутри сверхпроводника, мы бы воспринимали фотон — переносчик света — как частицу, обладающую массой, потому что не догадывались бы, что единственная причина, по которой фотон ведёт себя как массивная частица, заключается в его взаимодействии с материей, находящейся в определённом состоянии.
Как, будучи узниками метафорической сверхпроводящей пещеры, мы смогли бы догадаться о существовании подобного механизма возникновения массы фотона и подтвердить справедливость наших выводов, не имея возможности посмотреть на сверхпроводник извне? Я не уверен, существует ли какое-нибудь универсальное правило, но, когда происходит «щелчок в мозгу» и все части пазла складываются вместе, мы скачкообразно переходим на новый уровень понимания связи между казавшимися ранее несвязанными явлениями и приходим к заключению, что, по-видимому, сделали правильный выбор.
Такой «скачок» в физике элементарных частиц начался в конце 1950-х и закончился в начале 1970-х годов. Постепенно стало ясно, что квантовая электродинамика, добиться завершения которой удалось после совещания на Шелтер-Айленде, могла бы быть взята за образец для построения ещё более общей квантовой теории, описывающей все известные фундаментальные взаимодействия. Как я уже писал ранее, математический аппарат квантовой электродинамики и теории слабого взаимодействия, отвечающего за большинство ядерных реакций, очень похож. Единственное отличие заключается в том, что переносчики слабого взаимодействия являются массивными частицами, а переносчики электромагнитного взаимодействия — безмассовыми. И в 1961 году Глэшоу продемонстрировал, что эти две разные силы действительно могут быть соединены в одной теории, в которой электромагнитное и слабое взаимодействия оказываются разными проявлениями одной и той же сущности. Но оставался нерешённым вопрос, почему фотон не имеет массы, а переносчики слабого взаимодействия — W- и Z-бозоны — имеют.
Однако после того, как было признано, что само пространство способно действовать как огромный «сверхпроводник», в том смысле, что фоновое поле виртуальных частиц может приводить к возникновению эффективных масс у движущихся сквозь него реальных частиц, Стивен Вайнберг и независимо от него Абдус Салам в 1967 году доказали, что именно это и происходит с W- и Z-бозонами.
Интересно здесь не само открытие механизма возникновения масс у W- и Z-бозонов, а то, что в отсутствие такого механизма электромагнитное и слабое взаимодействия оказываются лишь различными проявлениями одного и того же физического явления. Ещё раз: наблюдаемое различие между этими двумя взаимодействиями в значительной степени — результат стечения обстоятельств. Если бы мы не жили в пространстве, заполненном когерентным ансамблем виртуальных частиц в определённом квантовом состоянии, электромагнитное и слабое взаимодействия выглядели бы для нас одинаково. Они представляются нам в виде различных теней на стене пещеры, скрывая свою истинную природу за пределами прямых свидетельств наших органов чувств.
В 1971 году голландский физик Герард ’т Хоофт, ещё будучи аспирантом, показал, что механизм возникновения масс W- и Z-бозонов является математически и физически согласованным. В 1979 году Глэшоу, Салам и Вайнберг удостоились за свою теорию Нобелевской премии, а 1984 году W- и Z-бозоны были обнаружены экспериментально на большом ускорителе в ЦЕРНе, и их массы очень хорошо совпали с предсказанными. Наконец, в 1999 году получил Нобелевскую премию и сам 'т Хоофт, который вместе со своим научным руководителем Мартинусом Вельтманом показал, что теория Глэшоу — Вайнберга — Салама самосогласованна.
Но этим результатом дело не ограничилось. Успех объединения слабого и электромагнитного взаимодействий в единую силу, получившую название электрослабого взаимодействия, оказался сильным искушением для физиков попытаться таким же образом свести воедино все известные фундаментальные взаимодействия. Теория сильного взаимодействия, разработанная после теоретического открытия асимптотической свободы, о которой я рассказывал в главе 1, имеет точно такую же общую форму, как и электрослабая теория. Теории подобного типа получили название калибровочных. Это название тоже имеет историю, связанную с попытками рассмотрения разных сил как различных проявлений одной и той же физической сущности.
Ещё в 1918 году физик и математик Герман Вейль, обратив внимание на сходство уравнений гравитационного и электромагнитного поля, предположил, что гравитация и электромагнетизм могут быть сведены в единую теорию. Он назвал объединяющую их особенность калибровочной симметрией, связанной с тем, что в общей теории относительности, как мы вскоре увидим, калибровка, или масштаб шкал измерительных приборов, используемых различными наблюдателями, может быть произвольно изменён, и это изменение не сказывается на общем характере законов гравитации.
Математически то же самое происходит и при измерении различными наблюдателями величины электрического заряда в электродинамике. Вейль попытался связать таким способом классическую электродинамику и гравитацию, но не преуспел в этом. Однако созданный им математический аппарат оказался востребован при создании квантовой электродинамики, и калибровочная симметрия легла в основу теорий слабых и сильных взаимодействий. Сегодня калибровочная симметрия является ключевой идеей большинства попыток создания квантовой теории гравитации и объединения её с другими взаимодействиями.
Электрослабая теория и основанная на асимптотической свободе теория сильного взаимодействия вместе образовали так называемую Стандартную модель физики элементарных частиц. Все эксперименты, поставленные за последующие двадцать лет, находились в прекрасном согласии с этими теориями. Всё, что оставалось сделать для окончательного объединения слабого и электромагнитного взаимодействий — это открыть истинную природу когерентного квантового состояния окружающего нас моря виртуальных частиц, ответственных, как предполагалось, за возникновение масс W- и Z-бозонов. Попутно было бы неплохо, чтобы тот же механизм отвечали за возникновение масс всех остальных частиц. Самые большие надежды в этом деле возлагались на БАК.
Как физик-теоретик я был буквально потрясён этой сверкающей, в каком-то смысле даже эзотерической реальностью, скрытой под миром элементарных частиц. С другой стороны, из разговоров со своей женой я знаю, что для большинства людей подобная реальность выглядит слишком далёкой от повседневной жизни, чтобы потрясти их воображение, несмотря на то что сам факт нашего существования неразрывно связан с этой скрытой реальностью. Если известные частицы не будут иметь в точности те массы, которые они имеют, например, если нейтрон не будет на одну тысячную тяжелее протона, жизнь в том виде, в котором она нам известна, не сможет существовать. Из-за того что протон легче нейтрона, он стабилен, по крайней мере в масштабах времени существования Вселенной. Водород, состоящий из одного протона и одного электрона, самый распространённый химический элемент во Вселенной, являющийся топливом для звёзд и, наряду с углеродом, — основным элементом органических молекул, тоже стабилен благодаря стабильности протона. Кроме того, если разность масс нейтрона и протона будет чуть больше, чем она есть, это нарушит хрупкое равновесие ядерных реакций на ранних стадиях существования Вселенной, благодаря которому образовалось большинство лёгких элементов. Лёгкие элементы сыграли ключевую роль в эволюции звёзд первого поколения, из остатков которых спустя 5–10 миллиардов лет сформировались звёзды второго поколения, в число коих входит и наше Солнце, а также планеты и наши собственные тела. Я никогда не перестаю удивляться тому, что каждый атом в моём теле когда-то родился в недрах звёзд первого поколения или при взрывах далёких сверхновых. Мы в буквальном смысле являемся детьми звёзд! Указанная разность масс элементарных частиц определяет и ход термоядерных реакций в ядре Солнца, обеспечивающего нас необходимой для жизни энергией. Наконец, вес, измеряемый напольными весами в вашей ванной комнате, определяется суммой масс всех элементарных частиц, из которых вы состоите.
Как ни сильна связь между царством частиц и нашим собственным, развитие физики XX века происходило не только в направлении изучения явлений, находящихся вне нашего прямого восприятия. Поэтому вернёмся из микромира к более привычным масштабам.
Что может быть более непосредственным для восприятия, чем пространство и время? Они образуют главную часть человеческого когнитивного окружения. Наиболее характерные особенности поведения животных выражаются в пространственно-временных изменениях. Например, котёнок совершенно спокойно гуляет по листу оргстекла, закрывающему люк, но до определённого возраста, начиная с которого кошки начинают воспринимать пустое пространство под ногами как опасность. Тем более удивительно, что мы открыли тесную связь между пространством и временем только в начале XX века, и до этого никто о такой связи даже не подозревал. Мало кто возьмётся оспаривать, что обнаружение Альбертом Эйнштейном такой связи и создание специальной и общей теории относительности является одним из выдающихся интеллектуальных достижений нашего времени. Метафорически его открытие поразительно похоже на озарение обитателя Платоновой пещеры.
Как уже говорилось, Эйнштейн хотел согласовать уравнения Максвелла с принципом относительности. Напомню, что в теории Максвелла скорость света может быть получена из двух фундаментальных констант, одна из которых определяет силу электрического взаимодействия между двумя зарядами, а другая — силу магнитного взаимодействия между двумя магнитами. Принцип относительности Галилея подразумевает, что эти константы должны быть одинаковыми для любых двух наблюдателей, движущихся друг относительно друга с постоянной скоростью. Но это также означает, что любой наблюдатель должен при измерении скорости света получать одно и то же значение, независимо от того, как он движется относительно источника света. Таким образом, Эйнштейн пришёл к первому постулату теории относительности: скорость света в пустом пространстве является универсальной константой; и она не зависит ни от скорости источника света, ни от скорости наблюдателя.
Интуитивная абсурдность этого постулата будет более очевидной, если привести аналогию с выборами в США. Представьте себе, что республиканцы набирают на выборах в конгресс более 50% голосов, и одновременно с ними демократы тоже набирают более 50% голосов. Причём общее количество набранных обеими партиями голосов составляет 100%. Постулат Эйнштейна, на первый взгляд, приводит к похожему абсурдному следствию.
Представьте себе двух наблюдателей, которые движутся навстречу друг другу, и в момент их встречи в точке, где они встречаются, загорается лампа. Сферическая оболочка света начинает распространяться из этой точки во всех направлениях, освещая мрак. Свет распространяется так быстро, что мы обычно не замечаем этой расширяющейся сферы, разделяющей свет и тьму, но предположим, что мы её видим. Наблюдатель А, покоящийся относительно лампочки, спустя несколько наносекунд увидит следующую картину:
Он обнаружит себя в центре световой сферы, а наблюдатель В, движущийся по отношению к нему вправо, сместится за эти несколько наносекунд на некоторое расстояние.
Со своей стороны наблюдатель В будет наблюдать расширяющуюся световую сферу видя, что он находится в её центре, поскольку, согласно первому постулату Эйнштейна, свет распространяется одинаково относительно любого наблюдателя, независимо от того, как движется этот наблюдатель. Таким образом, он будет видеть себя в центре сферы, а наблюдатель А относительно него и центра сферы сместится влево:
Другими словами, оба наблюдателя обнаружат себя в центре сферы. Интуиция говорит нам, что это невозможно. Но оба наблюдателя действительно находятся в центре! Это прямое следствие первого постулата.
Как такое может быть? Только если пространство и время для каждого наблюдателя выглядят по-разному. В то время как один из наблюдателей видит, что расстояние между ним и всеми точками расширяющейся световой сферы одинаковое, для другого наблюдателя (с точки зрения первого) расстояние между ним и световой сферой в одном направлении отличается от расстояния в другом направлении. Абсолютность пространства и времени была заменена Эйнштейном на абсолютность скорости света. Все парадоксы теории относительности в действительности возникают из-за того, что наши сведения об удалённых событиях могут быть только косвенными. Мы не можем находиться «здесь» и «там» в одно и то же время. Единственным способом узнать, что происходит «там», является получение «оттуда» какого-то сигнала, который не может распространяться быстрее света, поэтому мы не можем получить информацию о том, что происходит «там» «сейчас». Когда мы «сейчас» получаем сигнал «оттуда», он приносит нам информацию о том, что было «там» «тогда».
Большинство из нас не привыкли воспринимать происходящие в мире события с такой позиции, потому что скорость света очень велика, а наша проницательная интуиция шепчет, что событие, которое мы видим, происходит «сейчас». Но это просто особенность нашего восприятия. Тем не менее эта особенность настолько сильна, что, не имей Эйнштейн серьёзных оснований задуматься о странном поведении света, которое следует из электродинамики Максвелла, он вряд ли разглядел бы связь между пространством и временем в той тени на стене «пещеры», которую мы называем словом «сейчас».
Когда вы фотографируете какую-нибудь сцену из жизни, вы обычно воспринимаете полученный результат как моментальный, единовременный слепок: собака прыгнула на Лили, в то время как та танцевала. Однако это не совсем верно. Снимок представляет собой слепок, но не единовременный. Свет от разных объектов попал в камеру в разные моменты времени, поскольку эти объекты находились на разных расстояниях от камеры. По этой причине фотография представляет собой не единый временной срез, а скорее нарезку событий, происходивших в разных точках пространства в разное время.
Эта «времениподобная» природа пространства обычно оказывается за пределами нашего повседневного опыта из-за колоссального различия скоростей, с которыми мы обычно имеем дело, и скоростью света. Например, за одну сотую долю секунды — характерное время выдержки при фотографировании — свет успевает преодолеть около 3000 километров — расстояние от Москвы до Барселоны! Тем не менее, даже несмотря на то, что на большинстве обычных фотоснимков не присутствуют пейзажи с такими огромными расстояниями, «сейчас», отображённое на фотографии, не является абсолютным ни в каком смысле. Оно уникально для каждого наблюдателя. Понятия «здесь и сейчас» и «там и тогда» для каждого наблюдателя — разные. Только наблюдатели, находящиеся в одном и том же «здесь», могут утверждать, что они находятся в одном и том же «сейчас».
Теория относительности же говорит нам, что наблюдатели, движущиеся друг относительно друга, не могут договориться о том, что такое «сейчас», даже если они находятся одновременно в одном «здесь». Это происходит оттого, что для них понятия «там» и «тогда» различаются. Позвольте мне привести вам один из наиболее часто используемых дидактических примеров, придуманный самим Эйнштейном и представляющийся мне наиболее удачным. Рассмотрим двух наблюдателей, едущих на двух поездах, движущихся параллельно друг другу с постоянной относительной скоростью. Неважно, какой поезд на самом деле движется, а какой стоит, потому что нет никакого способа выяснить это. Предположим, что в тот момент, когда эти наблюдатели, сидящие каждый в середине своего поезда, проезжают друг мимо друга, в головной и хвостовой вагоны поезда А одновременно ударяют две молнии. Сначала посмотрим, что видит наблюдатель А:
Он видит вспышки от молний одновременно, и поскольку он находится точно посередине поезда, то приходит к выводу, что оба удара молний также произошли одновременно. Однако наблюдатель В за то время, пока свет от молний дойдёт до него, успеет сместиться вправо, следовательно, он сначала увидит правую вспышку, а затем левую.
На первый взгляд, в этом нет ничего необычного. Наблюдатель В видит правую вспышку света раньше из-за того, что он приближается к правой вспышке и удаляется от левой. Однако первый постулат Эйнштейна говорит нам, что скорость света для В точно такая же, как и для А, и, с его точки зрения, свет от левой вспышки движется к нему с той же скоростью, что и от правой. Таким образом, В будет «наблюдать» следующее:
В результате В должен прийти к неизбежному выводу, что удар молнии справа произошёл раньше удара молнии слева. И это не кажущийся эффект, для него молния справа действительно ударяет раньше, чем молния слева! Пытаясь согласовать свои наблюдения, А и В не смогут прийти к единому мнению, поскольку в силу принципа относительности каждый из них вправе считать себя покоящимся, а движущимся другого. Из этого следует парадоксальный вывод: удалённые события, которые являются одновременными для одного наблюдателя, не обязательно будут одновременными для другого.
Подобный мысленный эксперимент привёл Эйнштейна к выводу, что два краеугольных камня нашей картины мира — абсолютное пространство и абсолютное время — должны быть изъяты из здания физики. Для движущихся относительно друг друга наблюдателей абсолютных пространства и времени не существует: А будет наблюдать, что часы В идут медленнее, чем часы А, но при этом В будет наблюдать, что часы А идут медленнее, чем часы В. Кроме того, А будет наблюдать, что поезд В короче, чем поезд А, а В будет наблюдать, что поезд А короче, чем поезд В.
Если у вас сложилось мнение, что все эти парадоксы связаны исключительно со способом наблюдения, то вы ошибаетесь. Для каждого наблюдателя течение времени и масштаб линейки у другого наблюдателя на самом деле другие. Поскольку в физике именно измерение определяет реальность, и мы не беспокоимся о реальности, которая лежит за рамками наших измерений, то всё, что мы измеряем, это и есть то, что происходит на самом деле. Вот один из примеров. Космические лучи, которые постоянно бомбардируют Землю, содержат частицы очень высоких энергий, движущиеся со скоростью, близкой к скорости света. Когда они попадают в верхние слои атмосферы, то сталкиваются с ядрами атомов газов, из которых состоит воздух, «высекая» из них ливень других элементарных частиц.
Одна из наиболее многочисленных частиц, рождаемых таким образом, называется мюоном. Эта частица практически идентична хорошо знакомому нам электрону, за исключением того, что она тяжелее. Даже сегодня у нас нет ни малейшего представления, почему существует более тяжёлая копия электрона. Узнав об открытии мюона, известный американский физик Исидор Исаак Раби отреагировал на него саркастическим вопросом: «Ну и кто это заказывал?» Из-за того, что мюон тяжелее электрона, он нестабилен и распадается на электрон и два нейтрино.
Среднее время жизни мюона, измеренное в лаборатории, составляет около одной миллионной доли секунды. Частица, время жизни которой составляет одну миллионную секунды, двигаясь со скоростью света, способна пролететь около 300 метров, прежде чем распасться. Таким образом, мюоны, рождаемые в верхних слоях атмосферы, по идее не должны достигать поверхности Земли. Однако же мюоны доминируют в космических лучах над всеми остальными частицами, кроме фотонов и электронов!
Теория относительности объясняет этот парадокс следующим образом: «собственные часы» мюона идут медленнее часов наблюдателя на поверхности Земли, потому что мюон движется со скоростью, близкой к скорости света. В своей собственной системе отсчёта мюон распадается за одну миллионную долю секунды, но в системе отсчёта наземного наблюдателя при этом может пройти несколько секунд. Это простое наблюдение подтверждает тот факт, что для движущегося объекта время действительно замедляется.
Я не могу пройти мимо другого (моего любимого) парадокса, показывающего, насколько реальны эти эффекты и насколько относительны наши представления о реальности. Предположим, у вас есть суперавтомобиль, способный разгоняться до субсветовых скоростей. Предположим, что длина вашего автомобиля — 4 метра, и размеры моего гаража тоже составляют 4 метра. Когда автомобиль влетает в мой гараж на сумасшедшей скорости, в моей, гаражной, системе отсчёта его длина составит, скажем, только 3 метра из-за релятивистского сокращения расстояний. Таким образом, я теоретически могу успеть закрыть ворота после того, как автомобиль въедет в гараж, и он полностью там поместится. Затем я открою вторые ворота, и автомобиль благополучно покинет гараж, но в течение короткого промежутка времени он будет находиться внутри запертого гаража. Однако, с точки зрения водителя автомобиля, релятивистское сокращение претерпевает не автомобиль, а гараж, и в тот момент, когда автомобиль находится в гараже, гараж оказывается короче автомобиля, и я никак не могу закрыть одновременно передние и задние ворота, не повредив автомобиля.
Самое поразительное, что и я, и он правы. Я, то есть владелец гаража, действительно сначала закрыл передние ворота, а потом открыл задние и несколько мгновений наблюдал автомобиль, несущийся внутри закрытого гаража. Водитель же автомобиля наблюдал совершенно иную картину.
Ничто не является более реальным для человека, чем то, что он видит собственными глазами. Ключевой момент в разрешении этого парадокса состоит в том, что для разных наблюдателей последовательность удалённых от них событий может быть разной. Водитель будет настаивать на том, что, когда бампер автомобиля приблизился ко вторым воротам, багажник ещё выступал из первых и что сначала открылись вторые ворота гаража и только потом закрылись первые. Владелец же гаража будет утверждать, что всё происходило с точностью до наоборот: сначала закрылись первые ворота и только потом открылись вторые.
Но если моё «сейчас» отличается от вашего «сейчас», мои секунды отличаются от ваших секунд, мои метры отличаются от ваших метров, то существует ли вообще что-нибудь, относительно величины чего мы могли бы прийти к консенсусу? Ответ на этот вопрос положительный, и лежит он в области новых соотношений между пространством и временем в теории относительности.
Помните, рассуждая об универсальности скорости света, я говорил, что пространство имеет времениподобный характер? Эту идею можно развить дальше. Для одного наблюдателя вспышки молний разделены пространственным интервалом, но одномоментны во времени, тогда как для другого эти события разделены не только пространственным, но и временным интервалом. Если же скорость второго наблюдателя будет близка к скорости света, то пространственное расстояние между вспышками сократится для него почти до нуля и останется только временной интервал.
Таким образом, то, что для одного наблюдателя является расстоянием (между вспышками), для другого может оказаться промежутком времени.
Для того чтобы скорость света не зависела от движения наблюдателя, пространство и время должны быть связаны друг с другом особым образом. Поскольку скорость определяется путём деления пройденного расстояния на затраченное время, для того чтобы оба наблюдателя измерили одну и ту же скорость света, их пространственные и временные меры должны как-то преобразовываться при переходе от одного наблюдателя к другому. Мера, не изменяющаяся при переходе от одного наблюдателя к другому, действительно существует, но она включает не пространство или время по отдельности, а их комбинацию. Такую абсолютную меру нетрудно обнаружить. Расстояние, которое проходит луч света за время t, есть d = ct, где с — скорость света. Для любого другого наблюдателя, определяющего скорость света, измеренные им величины d’ и t' также должны удовлетворять уравнению d’ = ct'. Математически это означает, что квадрат некой величины s2 = с2t2 — d2 = с’2t’2 — d’2 должен быть равен нулю для любого наблюдателя. Это соотношение оказалось тем ключом, который открыл перед Эйнштейном новую картину пространства и времени.
Вернёмся к аналогии с пещерой. Представьте себе, что в какой-то момент времени на стене пещеры видна тень от линейки:
А в другой момент тень от той же линейки выглядит так:
Если наш пещерный житель воспользуется тенью от линейки для измерения расстояния, он обнаружит, что размеры одних и тех же предметов, измеряемые им, постоянно оказываются разными. Мы, не ограниченные двумерной стеной пещеры и живущие в трёхмерном мире, могли бы найти решение проблемы, обратив внимание на то, что длина тени на стене зависит от угла, под которым расположена линейка по отношению к стене и к источнику света.
Затем мы бы заметили, что, когда линейка поворачивается, её длина не изменяется, но изменяется длина проекции линейки на стену. Например, когда две стены образуют прямой угол, проекции линейки на эти стены будут выглядеть следующим образом:
Если длина линейки — L, то, согласно теореме Пифагора, L2 = x2 + y2. Таким образом, даже когда отдельные проекции x и y изменяются, сумма их квадратов всегда остаётся постоянной. В тот момент, когда для исследователя, наблюдающего только y-проекцию, «измеряемая» им длина линейки становится равной нулю, для исследователя, наблюдающего только x-проекцию, «измеряемая» длина линейки максимальна, и наоборот.
Математически именно так ведут себя пространство и время для двух наблюдателей, движущихся относительно друг друга. Движущийся поезд сокращается относительно неподвижного наблюдателя в пространстве, то есть становится короче, однако «растягивается» во времени в том смысле, что часы в движущемся поезде идут медленнее, чем часы неподвижного наблюдателя.
Ещё важнее то, что упомянутая величина s является в теории относительности аналогом длины линейки L из предыдущего примера. Эта мера — s — называется пространственно-временным интервалом и определяется как s2 = с2t2 — d2. Она представляет собой комбинацию пространственного и временного интервалов между событиями и всегда равна нулю для двух событий, лежащих на пространственно-временной траектории луча света. То есть если свет, испущенный из точки, в которой происходит первое событие, достигает точки, в которой происходит второе событие в момент этого события, то пространственно-временной интервал между этими событиями равен нулю. Интервал одинаков для всех наблюдателей, независимо от того, как они движутся друг относительно друга. Если два события не лежат на пространственно-временной траектории луча света, то интервал между ними будет отличен от нуля, но он по-прежнему будет одним и тем же для всех наблюдателей.
Таким образом, интервал s является, как говорят, инвариантом в теории относительности. Интервал для движущихся по-разному наблюдателей представляет собой то же, что длина линейки для пещерных обитателей. В теории относительности интервал — это пространственно-временная длина. Три пространственных измерения и время оказываются тесно связанными друг с другом, наподобие того, как тесно связаны две проекции линейки на стенах пещеры. Движение объекта приводит к изменению проекции четырёхмерного пространства-времени на трёхмерную сцену, которую мы называем словом «сейчас», подобно тому как поворот линейки приводит к изменению её двухмерной проекции на стену пещеры! Эйнштейн, руководствуясь постулатом о постоянстве скорости света, получил возможность сделать то, о чём большинство из нас могло бы только мечтать. Он выглянул за стены пещеры и увидел доселе скрытую от него реальность, подобно тому как наш персонаж однажды обнаружил, что круглая и прямоугольная тени на стене пещеры принадлежат цилиндрическому контейнеру. Но к чести Эйнштейна, он на этом не остановился. Картина ещё не была завершена. Его путеводной нитью снова оказался луч света. Все наблюдатели, движущиеся с постоянной скоростью, видят луч света, движущийся относительно них со скоростью c, и ни один из них не может утверждать, что он покоится, в то время как движутся все остальные. Движение относительно. Но что, если скорость движения наблюдателей не постоянна! Что, если один из них движется с ускорением? Смогут ли в этом случае все наблюдатели, включая ускоряющегося, однозначно утверждать, что один из них движется с ускорением? Чтобы исследовать этот вопрос, Эйнштейн придумал ещё один мысленный эксперимент. Как вы определяете, находясь в лифте, когда и в каком направлении он начинает движение? Когда лифт начинает движение вверх, вы чувствуете, что стали немного тяжелее; когда же лифт начинает двигаться вниз, вы ощущаете, что стали легче. Но откуда вы знаете, что изменение вашего веса вызвано ускорением лифта, а не изменением силы тяжести?
Не спешите с ответом. Не существует ни одного эксперимента, который дал бы запертому в лифте наблюдателю ответ, движется лифт с ускорением или покоится в гравитационном поле. Давайте упростим мысленный эксперимент. Пусть лифт находится в глубоком космосе вдали от тяготеющих тел. Когда он находится в состоянии покоя или движется равномерно и прямолинейно, мы испытываем внутри него полную невесомость. Если лифт начнёт ускоряться, скажем, вверх, его пол начнёт давить на ноги, чтобы придать вам такое же ускорение, которое испытывает он сам. Если вы выпустите мяч из ваших рук, он начнёт «падать» на пол. Почему? Потому что если мяч первоначально находился в состоянии покоя, то он, согласно Галилею, будет стремиться сохранить это состояние, однако пол лифта движется вверх с ускорением и в конце концов настигнет мяч. С вашей точки зрения, это будет выглядеть, как будто мяч с ускорением полетел вниз и ударился об пол. Более того, ускорение мяча не зависит от его массы. Действительно, какой бы мяч вы ни взяли, пол лифта настигнет его через тот же самый промежуток времени.
Если бы Галилей оказался вместе с вами в лифте, он мог бы поклясться, что находится на Земле. Все опыты с падающими телами, которые он поставил за свою жизнь, будут проходить в таком лифте точно так же, как и на поверхности Земли. Таким образом, если Галилей пришёл к выводу, что все законы физики выполняются одинаково во всех системах отсчёта, движущихся равномерно и прямолинейно, то Эйнштейн пошёл дальше и понял, что законы физики должны быть одинаковы для системы отсчёта, движущейся с постоянным ускорением, и для системы отсчёта, покоящейся в гравитационном поле. С этой точки зрения ускорение тоже относительно, просто один наблюдатель назовёт его ускорением, а другой — гравитацией.
Снова Эйнштейн выглянул за пределы пещеры. Если гравитация может быть «создана» внутри лифта, то, может быть, мы все живём внутри метафорического лифта? Может быть, то, что мы называем гравитацией, на самом деле является ускорением, и всё зависит только от выбранной точки зрения? Мы живём на Земле. Земля обладает большой массой. Возможно, то, что мы воспринимаем как силу притяжения между двумя массами, является результатом какого-нибудь хитрого искажения окружающего нас пространства-времени?
Чтобы сложить получившийся пазл, Эйнштейн снова обратился к свету. Он показал, что постоянство скорости света должно определять способ, которым пространство и время сшиваются вместе. Что делает луч света в ускоряющемся лифте? Для внешнего наблюдателя свет будет распространяться с постоянной скоростью по прямой линии. Но для наблюдателя, находящегося внутри ускоряющегося лифта, траектория луча света окажется искривлённой:
В системе отсчёта лифта луч света будет отклоняться вниз, потому что лифт ускоряется вверх. Другими словами, свет будет «падать». Но если ускорение в лифте эквивалентно покою в гравитационном поле, то луч света должен изгибаться, проходя мимо массивных тел. По большому счёту, это неудивительно. Эйнштейн к тому времени уже показал, что масса и энергия эквивалентны и взаимозаменяемы. Энергия светового луча увеличивает массу поглощающего его тела. Аналогично масса тела может перейти в излучение и быть унесённой лучом света в виде энергии. Таким образом, если свет может нести энергию, то он может вести себя так, будто он имеет массу, а все массивные объекты попадают в гравитационное поле.
Но с этим понятием имеется одна фундаментальная проблема. Падающий мяч ускоряется. Его скорость зависит от его координат. Однако мы же только что подвели постоянство скорости света под фундамент специальной теории относительности. Свет всегда должен путешествовать с одной и той же скоростью, независимо от того, как движется наблюдатель по отношению к лучу света и по отношению к другим наблюдателям. Поэтому наблюдатель, располагающийся в левой верхней части лифта, должен при измерении скорости света получить значение c. Но наблюдатель в правой нижней части лифта должен получить то же самое значение c, несмотря на то что к моменту, когда свет дошёл до него, его скорость успела возрасти по сравнению со скоростью первого наблюдателя.
Как примирить эти результаты с выводом, что луч света в лифте изгибается, потому что он «падает»? Кроме того, поскольку Эйнштейн постулировал, что в гравитационном поле должны иметь место те же явления, что и в ускоряющемся лифте, свет в гравитационном поле тоже должен «падать». Это может произойти, только если скорость света будет разной в разных точках пространства!
Есть только один способ примирить два противоречащих друг другу поведения света: искривление светового луча под действием гравитационного поля или внутри ускоряющегося лифта и постоянство скорости света для любого наблюдателя: масштаб линеек и ход часов различных наблюдателей, даже находящихся в одной системе отсчёта — в ускоряющемся лифте или на поверхности Земли, — должны зависеть от их положения в пространстве и времени!
Что в этом случае происходит с пространством и временем? Чтобы понять это, вернёмся снова в нашу пещеру. Предположим, что на плоской стене пещеры изображена карта, на которую нанесён путь самолёта, следующего из Нью-Йорка в Бомбей:
Можем ли мы добиться того, чтобы кривая траектория на этом рисунке выглядела локально как прямая линия, вдоль которой самолёт двигался бы равномерно и прямолинейно? Один из способов — позволить линейкам изменять свою длину в зависимости от широты места. Как вы, возможно, заметили, Гренландия на этой карте выглядит больше Европы. Если линейка в полярных широтах имеет большую длину, чем в средних, то географ, отправившись с этой линейкой в Гренландию и измерив её размеры, что называется, «на месте», а затем проделав то же самое в Европе, убедится, что при подобных локальных измерениях Гренландия оказывается гораздо меньше Европы.
Для обитателя пещеры такое предложение может показаться безумным, но не для нас, знающих, что Земля круглая. Предложенное решение эквивалентно предположению, что поверхность, на которой изображена карта, на самом деле неплоская, а приведённое изображение представляет собой проекцию на плоскость стены пещеры карты, нарисованной на сфере. И на реальной земной сферической поверхности расстояния при приближении к полюсам действительно сокращаются по сравнению с изображёнными на плоской карте. Если перенести траекторию самолёта на глобус, то сразу же станет очевидно, что она представляет собой кратчайший путь из Нью-Йорка в Бомбей, и самолёт действительно будет двигаться вдоль неё с постоянной скоростью и не меняя направления.
Какой из этого следует вывод? Если мы хотим быть последовательными, мы должны признать, что для разрешения упомянутого ранее противоречия пространство-время в системе отсчёта, движущейся с ускорением или находящейся в гравитационном поле, должно быть искривлённым. Почему же мы не ощущаем эту кривизну, если она на самом деле существует? Потому что мы всегда воспринимаем пространство локально в небольшой окрестности. Представьте себе таракана, живущего в Канзасе. Мир для него представляет собой плоскую, как доска, двухмерную поверхность. Только позволив себе роскошь посмотреть на эту поверхность из трёхмерного пространства, можно увидеть, что на самом деле она представляет собой поверхность сферы. Аналогично, чтобы увидеть кривизну трёхмерного пространства, надо посмотреть на него из четырёхмерного, но это так же невозможно для нас, как невозможно для таракана, обречённого вечно ползать по поверхности земли, — трёхмерное пространство находится за пределами его восприятия.
В этом смысле Эйнштейн был Эратосфеном XX века. Эратосфен утверждал, что Земля — шар, и чтобы в этом убедиться, достаточно пронаблюдать за тем, на какую высоту поднимается в полдень солнце в разных городах. Эйнштейн утверждал, что трёхмерное пространство искривлено, и чтобы в этом убедиться, достаточно пронаблюдать за поведением светового луча в гравитационном поле. Эйнштейн предложил три способа проверки его гипотезы.
Во-первых, при прохождении через искривлённое пространство рядом с Солнцем световой луч должен отклоняться на вдвое больший угол, чем если бы он просто падал в плоском пространстве. Во-вторых, если пространство возле Солнца искривлено, то орбита ближайшей к Солнцу планеты Меркурий должна представлять собой не идеальный эллипс, а рисовать в пространстве «розетку», что должно приводить к медленному смещению перигелия — наиболее близкой к Солнцу точки орбиты. И в-третьих, часы на первом этаже небоскрёба должны идти медленнее, чем на последнем.
Смещение перигелия Меркурия было известно уже давно, и расчёт Эйнштейна прекрасно совпал с наблюдаемой величиной. Однако объяснение чего-то уже известного не так впечатляет, как предсказание чего-то нового. Два других предсказания Эйнштейна относились как раз к последней категории.
В 1919 году экспедиция под руководством сэра Артура Стэнли Эддингтона отправилась в Южную Африку для наблюдения полного солнечного затмения. Когда луна закрыла солнечный диск, Эддингтон сфотографировал звёзды, расположенные вблизи Солнца. Сравнив полученную фотографию с фотографией, выполненной в другое время года, он определил, что видимые положения звёзд во время затмения отличаются от обычных в точности на предсказанную Эйнштейном величину. Луч света действительно изгибался, проходя мимо Солнца, а имя Эйнштейна с тех пор стало нарицательным.
Третья проверка была выполнена лишь сорок лет спустя. Сотрудник Гарвардского университета Роберт Паунд и его аспирант Глен Ребка показали, что частота света, излучённого в подвале физической лаборатории, уменьшается, когда свет достигает приёмника, расположенного на верхнем этаже. И это изменение частоты точно совпало с предсказанным Эйнштейном.
С точки зрения общей теории относительности искривление траектории и ускорение движущегося в гравитационном поле тела могу быть представлены как проявление кривизны пространства. Чтобы это понять, вернёмся снова к двухмерной аналогии. Представим себе, что мы видим на стене пещеры следующую проекцию траектории движения тела вокруг большого объекта.
Для объяснения такого движения можно придумать силу, которая действует на небольшое тело со стороны большого. Но можно предположить, что настоящая поверхность, по которой движется тело, искривлена в трёхмерном пространстве, и тело движется со своей точки зрения «прямо», но его траектория проходит по искривлённой поверхности:
Похожие аргументы использовал и Эйнштейн, утверждая, что вместо силы притяжения, действующей между двумя телами, можно рассматривать ситуацию, когда массивное тело искривляет пространство-время вокруг себя, а другие тела, стремясь двигаться «прямо» в искривлённом пространстве — времени, движутся по искривлённым траекториям. Это замечательное соотношение между материей и пространством-временем напоминает Уробороса — змея, который кусает себя за хвост. Кривизна пространства управляет движением материи, распределение материи в пространстве, в свою очередь, управляет кривизной пространства. Именно эта обратная связь между материей и кривизной делает общую теорию относительности намного сложнее ньютоновской механики, где пространство, в котором перемещаются объекты, абсолютно и неизменно.
В привычном окружающем нас мире кривизна пространства настолько мала, что её последствия практически незаметны, и это является одной из причин, по которой понятие искривлённого пространства кажется нам чуждым. Путешествуя из Нью-Йорка в Лос-Анджелес, луч света отклоняется из-за искривления пространства, вызываемого массой Земли, всего на один миллиметр. Однако если время путешествия света велико, то даже небольшой эффект может привести к заметным последствиям. Возьмём, к примеру, сверхновую 1987 года, о которой я уже упоминал как об одном из самых интересных астрономических событий XX века. Нетрудно посчитать — и мы с моим коллегой действительно подсчитали и поразились настолько, что написали об этом научную статью, — что небольшой кривизны пространства, сквозь которое свет от сверхновой 1987 года добирается до нас с другого конца Галактики, оказалось достаточно, чтобы задержать его прибытие на девять месяцев! Если бы пространство не было искривлено, мы увидели бы вспышку сверхновой 1987 года ещё летом 1986-го.
Финальным испытательным полигоном для идей Эйнштейна стала сама Вселенная. Общая теория относительности описывает не только искривление пространства вблизи массивных тел, но и геометрию всей Вселенной. Если средняя плотность вещества во Вселенной окажется достаточно большой, то пространство может искривиться настолько, что замкнётся в гигантский аналог сферы в трёхмерном пространстве. Но что ещё более важно, в этом случае Вселенной придётся рано или поздно остановить своё расширение и начать сжиматься, придя в конечном итоге к Большому сжатию — явлению, обратному Большому взрыву.
Есть что-то зачаровывающее в «закрытой» Вселенной — как называют Вселенную с высокой средней плотностью вещества. Я помню, как, будучи ещё студентом, впервые услышал об этом на лекции астрофизика Томаса Голда и запомнил на всю жизнь. В закрытой Вселенной, которая замкнута сама на себя, луч света, движущийся по прямой линии, в конечном итоге вернётся в ту точку, из которой он вышел, подобно тому как вернётся в исходную точку путешественник, совершивший кругосветное путешествие на поверхности Земли. То есть свет в такой Вселенной никогда не сможет уйти в бесконечность. Когда подобное происходит в меньших масштабах, то есть когда космический объект имеет настолько высокую плотность, что даже свет не может убежать с его поверхности, мы называем его чёрной дырой.
Если наша Вселенная закрыта, то мы сами живём внутри самой настоящей чёрной дыры! Но не в той, которая показана в диснеевском фильме 1979 года. Суть в том, что чем больше размер чёрной дыры, тем меньше должна быть плотность вещества, необходимая для её создания. Чёрная дыра с массой Солнца будет иметь размер порядка километра и среднюю плотность в сотни миллиардов тонн на кубический сантиметр. Чёрная дыра с массой, равной массе наблюдаемой части Вселенной, будет иметь размер, сравнимый с размером видимой части Вселенной, при средней плотности всего лишь порядка 10-29 грамма на кубический сантиметр!
Сегодняшние наблюдательные данные, однако, свидетельствуют о том, что мы живём не внутри чёрной дыры. По крайней мере, большинство теоретиков считает, что средняя плотность вещества во Вселенной хотя и близка к критической, но всё же недостаточна, чтобы закрыть Вселенную. По данным наблюдений, наш мир, скорее всего, избежит Большого сжатия и будет продолжать расширяться вечно. Характер расширения Вселенной более всего соответствует пограничному случаю между открытой и закрытой Вселенными, который носит название плоской Вселенной, и если источником гравитационного притяжения служит материя, то расширение Вселенной будет в этом случае происходить замедляющимися темпами, но никогда не остановится. Так как для плоской Вселенной необходима средняя плотность вещества примерно в 100 раз больше наблюдаемой, теоретики пришли к выводу, что на 99% Вселенная состоит из тёмной материи, невидимой для телескопов, о чём я уже рассказывал в главе 3. Причём даже рассчитанного путём «взвешивания» галактик и скоплений галактик количества тёмного вещества всё равно оказывается в три раза меньше, чем необходимо для плоской Вселенной.
Как мы можем доказать правильность этого предположения? Например, можно попытаться определить среднюю плотность в галактиках и скоплениях галактик, как описывалось в главе 3, но это косвенный способ, который не даёт прямых свидетельств плоскости Вселенной. Однако существует способ, позволяющий — по крайней мере, в принципе — напрямую измерить кривизну пространства. Каким образом разумный таракан из Канзаса мог бы удостовериться в кривизне земной поверхности, не совершая кругосветного путешествия и не поднимаясь в космос? Даже не будучи в состоянии представить себе сферу в трёхмерном пространстве, подобно тому как мы не можем представить себе трёхмерную гиперсферу в четырёхмерном пространстве, он мог бы провести ряд измерений, которые убедили бы его в том, что поверхность Земли является сферой. Ещё Евклид более двадцати веков назад доказал, что сумма трёх углов в любом треугольнике, начерченном на бумаге, равна 180°. Если я нарисую прямоугольный треугольник, один из углов которого имеет величину 90°, сумма двух других углов также должна составлять 90°. Поэтому каждый из оставшихся углов должен быть меньше 90°, как показано на следующем рисунке:
Но это справедливо только на плоскости. На поверхности сферы я могу нарисовать треугольник, все углы которого будут иметь величину 90°. Для этого достаточно провести одну линию по экватору от нулевого до девяностого меридиана, а от её концов провести две линии, пересекающиеся на Северном полюсе:
Если вы помните, окружность радиуса r имеет длину 2πr. Однако на сфере длина любой параллели всегда меньше, чем умноженное на расстояние от полюса до этой параллели, отмеренное по поверхности сферы. Данная ситуация показана на следующем рисунке:
Нарисовав на поверхности Земли большой треугольник или большую окружность, мы по отклонению от предсказаний Евклида можем вычислить кривизну земной поверхности и определить, что она является сферой. Однако, как видно из рисунка, для того чтобы получить существенное отклонение от геометрии Евклида, нужно нарисовать очень большие геометрические фигуры, сравнимые с размерами Земли.
Для того чтобы произвести аналогичные измерения во Вселенной, нам нужно выполнить геометрические построения, размеры которых сравнимы с размерами самой Вселенной. Вместо окружности мы можем взять сферу в трёхмерном пространстве и попытаться определить, как изменяются площадь её поверхности и объём ограничиваемого ею шара с увеличением радиуса. Если измерения разойдутся с предсказаниями Евклида, значит, пространство нашей Вселенной искривлено.
Но как измерить объём сферы, размер которой составляет существенную часть видимой Вселенной? Ну, например, подсчитав число галактик, находящихся внутри этой сферы, предположив, что Вселенная однородна и плотность галактик в каждый момент времени одинакова в любой части Вселенной. В этом случае мы могли бы считать, что объём сферы пропорционален количеству находящихся внутри неё галактик, и всё, что нам останется, это построить график зависимости числа наблюдаемых галактик от расстояния до них. Если пространство искривлено, мы должны увидеть отклонение этого графика от предсказываемого евклидовой геометрией. В 1986 году два молодых принстонских астронома Е. Лох и Е. Спиллар произвели такой подсчёт, и полученный ими результат якобы свидетельствовал в пользу того, что Вселенная является плоской. К сожалению, вскоре после публикации их работы было показано, что галактики, эволюционируя, могут сливаться друг с другом, и на основании подсчёта их количества нельзя сказать о характере геометрии нашей Вселенной ничего определённого.
Ещё одним способом проверить геометрию Вселенной является измерение зависимости угла, под которым виден объект известного размера, от расстояния до этого объекта. На плоскости угол, под которым виден объект, будет уменьшаться с ростом расстояния:
Однако на сфере картина будет совсем иной:
В начале 1990-х годов было предпринято исследование зависимости угла, под которым видны очень компактные объекты в центрах галактик, от расстояния до них. Измерения производились при помощи радиотелескопов, и в обзор попали галактики, находящиеся от нас на расстояниях вплоть до половины радиуса наблюдаемой Вселенной. Полученная зависимость снова свидетельствовала в пользу того, что пространство нашей Вселенной плоское. Однако мы с коллегой показали, что и этот тест содержит неопределённость, связанную с возможной эволюцией исследуемых объектов.
В 1998 году неожиданно появилась совершенно новая возможность определения геометрии Вселенной на основе измерений неоднородности фона космического микроволнового излучения, называемого также реликтовым излучением, являющегося отголоском Большого взрыва.
Реликтовое излучение, впервые открытое в 1965 году, приходит к нам со всех сторон. Оно возникло почти 14 миллиардов лет назад и последний раз эффективно взаимодействовало с веществом, когда Вселенной было всего лишь 100 000 лет от роду. В ту давнюю эпоху это излучение имело температуру примерно 3000 градусов по абсолютной шкале Кельвина. В результате сегодня это излучение даёт нам картину распределения материи и излучения в ранней Вселенной. Так как излучение, которое мы видим сегодня, приходит равномерно со всех сторон, оно «рисует» для нас сферическую поверхность, существовавшую почти 14 миллиардов лет назад, когда это излучение в последний раз провзаимодействовало с веществом.
Эта сферическая поверхность предоставляет нам идеальную возможность использовать уже описанный ранее геометрический метод, если найти какой-нибудь эталон длины на этой сфере, угловой размер которого мы могли бы затем измерить. К счастью, природа предоставила именно такой эталон. Поскольку сила гравитации — это всегда сила притяжения, то любой фрагмент вещества всегда стремится сжаться под действием собственной гравитации, если только его не удерживает от этого какая-то дополнительная сила. Прежде чем Вселенная остыла до температуры ниже 3000 Кельвин, вещество состояло главным образом из сильно ионизированного водорода, который интенсивно взаимодействовал с излучением, оказывающим давление на вещество. Это давление предотвращало сжатие любого фрагмента вещества, если размеры этого фрагмента не превосходили некоторое критическое значение.
Вы спросите, что это за критическое значение? Сейчас объясню. Когда Вселенной было всего 100 000 лет, свет мог путешествовать по ней на расстояние не более 100 000 световых лет. Поскольку ничто не может распространяться быстрее света, то и гравитационное взаимодействие могло осуществляться только между телами, расстояние между которыми не превышало 100 000 световых лет. Это значит, что в это время максимальный размер неоднородностей вещества не мог превышать 100 000 световых лет. Когда же Вселенная остыла до 3000 Кельвин, водород рекомбинировал и перестал взаимодействовать с излучением. Давление излучения упало практически до нуля, и первоначальные неоднородности начали сжиматься под действием собственной гравитации. И первоначальный размер этих неоднородностей оказался как раз порядка 100 000 световых лет.
Измерив угловые размеры неоднородностей фона реликтового излучения, астрофизики в 1998 году пришли к выводу, что наша Вселенная всё же плоская. Самое интересное, что наблюдаемое распределение неоднородностей с высокой точностью совпало с предсказанием теоретической модели, построенной в предположении, что Вселенная плоская.
В то же время прямой подсчёт общей массы светлой и тёмной материи, содержащейся в галактиках и скоплениях галактик, окончательно показал, что она даёт только 30% плотности энергии, необходимой для того, чтобы геометрия Вселенной была плоской. Загадочные оставшиеся 70%, необходимые для обеспечения ускоренного расширения Вселенной, о котором я упоминал в предыдущей главе, получили название тёмной энергии. В итоге получается, что мы живём в очень странном мире, где 99% общей энергии скрыты от нашего взгляда в форме 30% тёмной материи и почти 70% тёмной энергии, заполняющей всё пустое пространство!
Удивительно, насколько расширилось наше представление о пространстве и времени, с тех пор как Эйнштейн впервые обнаружил между ними скрытую связь. Сегодня мы понимаем, что наша Вселенная представляет собой четырёхмерный мир, в котором каждый наблюдатель, прежде чем рассматривать по отдельности пространство и время, должен определить своё собственное «сейчас». Мы также понимаем, что пространство и время неразрывно связаны с материей и энергией и что искривление пространства-времени вблизи массивных объектов приводит к явлению, которое мы воспринимаем как гравитацию. Мы сумели измерить кривизну пространства-времени нашей Вселенной и пролить свет на её устройство и дальнейшую эволюцию. Возможно, мы и живём в метафорической пещере, но тени на её стенах дали нам безошибочные доказательства того, что существуют новые, скрытые ранее связи, которые делают нашу Вселенную более понятной и в конечном итоге более предсказуемой. Прежде чем я обнажу перед вами следующий пласт устройства нашего мира, мне хотелось бы в заключение этой главы вернуться в мир повседневных явлений. Я обещал привести примеры, которые можно найти рядом с домом, а вместо этого, начав с таких простых вещей, как пространство и время, устремился в глубины Вселенной. Но скрытые связи, упрощающие картину Вселенной, лежат не только в глубинах микромира и на необъятных просторах мегамира.
На верхнем рисунке представлена наблюдаемая картина распределения интенсивности фона реликтового излучения в небольшой области неба, полученное детектором микроволнового излучения «Бумеранг», расположенным в Антарктиде. На нижних рисунках — три компьютерных модели распределения фона реликтового излучения для закрытой (слева), открытой (справа) и плоской (посередине) Вселенной.
Даже сегодня, когда совершаются грандиозные открытия в отношении пространства, времени и материи, которые я описал в этой главе, обнаруживаются новые связи в таких «экзотических» вещах, как овсянка, и таких разных, как вода и железо. Несмотря на то что предметом открытий, о которых я сейчас расскажу, является повседневная физика, их результаты служат недостающими кусочками пазла для построения «окончательной» теории.
Окружающие нас вещества являются на самом деле очень сложными. Так и должно быть, если подумать, как сильно различаются их свойства. Одна из причин, по которой химическая промышленность и материаловедение привлекают к себе колоссальные финансовые и интеллектуальные инвестиции, состоит в том, что они позволяют получать вещества, пригодные для удовлетворения практически любых потребностей. Иногда новые материалы открываются случайно. Например, высокотемпературная сверхпроводимость была открыта двумя исследователями в лаборатории IBM, которые, как алхимики, наугад тестировали различные вещества без какой бы то ни было теоретической базы. Хотя чаще материалы разрабатываются на основе обобщённых эмпирических знаний и теоретических предположений. Например, неудовлетворённость некоторыми свойствами кремния — основного материала, из которого изготавливаются полупроводниковые устройства, обеспечивающие работу наших компьютеров и фактически уже управляющие нашей жизнью, заставила учёных искать новые вещества с полупроводниковыми свойствами. Одним из таких материалов оказался галлий, играющий ключевую роль в следующем поколении полупроводников.
Даже простейшие и наиболее распространённые вещества могут проявлять в определённых условиях экзотические свойства. Я никогда не забуду как мой школьный учитель физики в шутку говорил, что в физике есть две вещи, доказывающие существование Бога.
Во-первых, это вода, которая практически единственная из всех веществ, замерзая, расширяется. Если бы вода не обладала такой особенностью, то водоёмы зимой промерзали бы до дна, рыбы не могли бы переживать зиму и, вероятно, никогда не доэволюционировали бы до людей. Во-вторых, коэффициент расширения бетона практически такой же, как коэффициент расширения стали. Если бы это было не так, то современные небоскрёбы не пережили бы зимы, потому что стальная арматура разорвала бы бетонные конструкции. Должен признаться, что второй пример мне не кажется удачным, потому что, если бы у стали и бетона были разные коэффициенты расширения, мы бы попросту не стали их использовать в строительстве, а нашли бы другие, более подходящие материалы.
В первом примере интересен тот факт, что вода — одно из самых распространённых веществ на Земле — ведёт себя при замерзании иначе, чем большинство других веществ.
Если же отвлечься от того, что вода расширяется при замерзании, то во всех остальных отношениях она является прекрасным примером поведения различных веществ при изменении физических условий. При встречающихся на Земле температурах вода может переходить из жидкого состояния в твёрдое или в газообразное. Каждое такое изменение называется фазовым переходом, потому что при этом происходит изменение фазы вещества: из твёрдой фазы в жидкую, из жидкой в газообразную и обратно. Будет справедливым утверждение, что если мы понимаем механизм и условия, управляющие фазовыми переходами любого вещества, то мы понимаем существенную часть окружающих нас физических явлений.
Главная трудность состоит в том, что в области фазового перехода вещество ведёт себя наиболее сложным образом. Когда вода закипает, в ней образуются турбулентные вихри, зарождаются пузырьки пара, которые растут и взрывообразно лопаются на поверхности. Однако в этой хаотической сложности поведения часто содержатся семена порядка. В то время как внутреннее строение коня может показаться безнадёжно сложным, простое масштабирование позволяет нам выделить некоторые его свойства, не требующие для своего объяснения углубления во все детали. Аналогично, безнадёжно пытаться описать поведение каждого пузырька пара в кастрюле с кипящей водой, но мы можем выделить несколько универсальных процессов, всегда происходящих, когда, скажем, вода кипит при определённой температуре и давлении, и изучить их путём масштабирования.
Например, когда вода кипит при нормальном атмосферном давлении, мы можем выбрать наугад небольшой объём внутри кастрюли и спросить себя: будет ли этот объём содержать пар или жидкую воду? В небольших масштабах описание окажется очень сложным. Очевидно, что не имеет смысла спрашивать про отдельную молекулу, представляет она собой жидкость или газ, потому что жидкое или газообразное состояние — это свойство множества молекул, характеризующееся, например, тем, близко или далеко они в среднем находятся друг от друга. Очевидно, что для нескольких молекул этот вопрос также не имеет смысла, потому что в процессе движения и столкновений молекулы могут находиться и в жидкости, и в газе, как далеко, так и близко друг от друга. Но как только рассматриваемый нами объём начинает содержать достаточно много молекул, чтобы можно было говорить об их усреднённом поведении, вопрос об агрегатном состоянии воды приобретает смысл.
Когда вода кипит при нормальных условиях, пузыри водяного пара и жидкость сосуществуют совместно. Обычно говорят, что при температуре 100 °С на уровне моря вода претерпевает фазовый переход первого рода. Любой макроскопический объём воды при температуре, точно соответствующей точке кипения, по прошествии некоторого времени приходит либо в газообразную, либо в жидкую фазу. Оба варианта являются равновероятными. При температуре чуть ниже точки кипения вода в любом пробном объёме всегда будет обнаруживаться в жидком состоянии, при температуре чуть выше точки кипения — в газообразном.
Несмотря на огромную сложность локальных процессов, идущих в воде в точке кипения, когда вода постоянно переходит из жидкого состояния в газообразное и обратно, всегда существует некий пограничный объём, относительно которого вопрос об агрегатном состоянии воды в нём имеет смысл. Для меньших объёмов локальные неоднородности плотности делают вопрос об агрегатном состоянии бессмысленным. Для больших объёмов можно однозначно сказать, в каком состоянии находится в них вода.
Разве не удивительно, что такая сложная система проявляет черты такого единообразного поведения? Это является следствием того факта, что каждая капля воды содержит невероятно огромное количество молекул, и хотя небольшие группы молекул могут вести себя хаотично, в большом объёме их совокупность приобретает конкретные макроскопические свойства. Это чем-то напоминает поведение людей. Каждый отдельный человек имеет свои собственные причины голосовать за того или иного политического кандидата. Некоторые даже пытаются пройти на избирательные участки со своими собственными бюллетенями, в которых вписано имя кандидата, не представленного в общем списке. Но на основе опросов общественного мнения политтехнологи могут с высокой степенью достоверности предсказать, кто из кандидатов победит на выборах. При усреднении по большому количеству избирателей все их индивидуальные различия нивелируются.
Теперь, когда мы обнаружили скрытый порядок в первоначальном хаосе, попробуем извлечь из него полезную информацию. Например, зададимся вопросом, изменяется ли масштаб, на котором становятся значимыми различия между жидким и газообразным состоянием, при изменении температуры и давления, при которых кипит вода. Если увеличить давление и таким образом увеличить плотность водяного пара, уменьшив тем самым разницу между плотностью пара и плотностью воды, то температура, при которой кипит вода, тоже увеличится. Из-за того, что теперь в точке кипения разность плотностей воды и пара меньше, размер областей, внутри которых агрегатное состояние воды будет неопределённым, как нетрудно догадаться, увеличится.
Если мы будем продолжать увеличивать давление, то придём к тому, что при определённых значениях давления и температуры, называемых критическими, различие между жидкостью и газом пропадёт в любом, даже бесконечном объёме. Вещество в таком состоянии невозможно отнести ни к жидкости, ни к газу. Немного ниже этой температуры и плотности вода больше похожа на жидкость, немного выше — на газ. Но станете ли вы считать воду при критической температуре жидкостью, газом или и тем и другим одновременно, зависит только от вашей точки зрения.
В критической точке у воды появляются новые, отсутствующие у жидкой воды и у водяного пара, свойства. Во-первых, на всех масштабах вещество выглядит одинаково. Вода в критической точке является «самоподобной» относительно изменения масштаба, в котором вы её изучаете. Если изобразить происходящие в воде флуктуации в большом увеличении, вы не заметите никаких отличий от картины этих флуктуации при обычном масштабе. Во-вторых, в критической точке в воде возникает явление, называемое критической опалесценцией. Из-за того, что в воде присутствуют флуктуации любого размера, она начинает рассеивать свет, имеющий любую длину волны, что проявляется в том, что вода теряет прозрачность и становится больше похожей на облако.
У этого состояния воды есть ещё одна интересная особенность. Свойство, когда что-то выглядит одинаково на разных масштабах, носит название масштабная инвариантность. Из-за масштабной инвариантности характер микроскопической структуры воды — то есть тот факт, что молекулы воды состоят из двух атомов водорода и одного атома кислорода, — становится неактуальным. Единственный параметр, который характеризует систему в критической точке, — это плотность. Если мы пометим области, в которых плотность чуть выше, как «+1», а области, в которых плотность чуть ниже, как «-1», то на всех масштабах структура воды будет выглядеть, как показано на следующем рисунке:
Это больше чем просто упрощённая картинка. Тот факт, что вода на всех масштабах физически представлена только этой одной эффективной степенью свободы, характеристикой, которая может принимать только два значения, полностью определяет характер фазового перехода в области критической точки. Это означает, что фазовый переход жидкость — газ для воды абсолютно идентичен фазовому перехода любого другого вещества, которое в своей критической точке может быть описано как набор чисел +1 и -1.
Рассмотрим, например, железо. Мало кто способен спутать кусок железа со стаканом воды, но каждый, кто когда-либо играл с магнитами, знает, что кусок железа можно намагнитить. На микроскопическом уровне каждый атом железа является маленьким магнитом, имеющим северный и южный полюсы. Когда поблизости нет других магнитов, атомы железа ориентированы случайным образом, так что в среднем их индивидуальные магнитные поля компенсируют друг друга, и суммарное магнитное поле равно нулю. Однако под влиянием внешнего магнита все атомные «магнитики» железа выстраиваются в направлении магнитного поля. Если внешнее магнитное поле направлено вверх, то все атомные «магнитики» в железе также повернутся вверх. Если внешнее магнитное поле направлено вниз, то все атомные «магнитики» в железе повернутся вниз.
Теперь представим себе идеализированный кусок железа, в котором атомные «магнитики» могут быть ориентированы только вверх или вниз, но ни в каком ином направлении. При низкой температуре при наличии внешнего магнитного поля, направленного, например, вверх, все «магнитики» повернутся в этом же направлении. Но если внешнее поле уменьшится до нуля, оно больше не будет диктовать «магнитикам», в каком направлении выстраиваться. Оказывается, «магнитикам» энергетически выгодно быть повёрнутыми в одном направлении, но в каком — совершенно безразлично. Они могли бы все повернуться вверх или вниз. Это означает, что в таком железном магните может происходить фазовый переход. После того как внешнее магнитное поле исчезнет, атомные «магнитики» могут через некоторое время из-за случайных тепловых колебаний все одновременно спонтанно перевернуться.
Математически это напоминает то же, что происходит с водой. Достаточно лишь заменить направление, в котором ориентированы «магнитики» железа, на знак вариации плотности воды. Как и в случае воды, можно считать, что в отсутствие внешнего магнитного поля для куска железа существует некий характерный масштаб, такой, что на меньших масштабах тепловые флуктуации могут изменять групповую ориентацию «магнитиков», а на больших — нет, и эта область будет обладать какой-то усреднённой намагниченностью в определённом направлении. Кроме того, когда температура повысится до некоторого определённого значения, образец достигнет своей критической точки. В этой точке флуктуации направлений ориентации «магнитиков» будут присутствовать на всех масштабах, и говорить о каком-то выделенном направлении его намагниченности будет бессмысленно.
Самое важное, что в критической точке вода и железо ведут себя одинаково. Тот факт, что в реальности микроскопические структуры этих двух веществ совершенно различны, не имеет значения, потому что свойства вещества в критической точке характеризуются лишь двумя степенями свободы — направлениями вверх и вниз или избыточной и недостаточной плотностью — на всех масштабах физика явления оказывается нечувствительной к микроскопическим различиям. Поведение воды при приближении к критической точке в отношении того, считать её жидкостью или газом, полностью идентично поведению магнита в отношении направления, в котором он намагничен.
Установление того факта, что мы можем использовать масштабно-инвариантные свойства различных систем вблизи критической точки для нахождения единообразия и порядка в том, что в противном случае представлялось бы невероятно сложным хаосом, является одним из величайших успехов науки, называемой физикой конденсированных сред. Этот подход, который произвёл революцию в нашем понимании этого раздела физики, был впервые применён в 1960–1970-х годах, Майклом Фишером и Кеннетом Вильсоном в Корнелле и Лео Кадановым в университете Чикаго. С тех пор всякий раз, когда у физиков возникали сложности, связанные с масштабированием задачи, они использовали методы, разработанные в этом исследовании. В 1982 году Кеннет Вильсон был удостоен Нобелевской премии за свои исследования относительно применимости этих идей для описания свойств не только воды, но и элементарных частиц, о чём я расскажу в заключительной главе. Главное, что это не субмикроскопический мир элементарных частиц и не необъятный космический простор, содержащий скрытые соотношения, упрощающие реальность, это то, что связывает воедино разнообразные и сложные явления материального мира, с которыми мы постоянно сталкиваемся в обычной жизни. Вспоминайте об этом каждый раз, когда услышите шум закипающего чайника или увидите морозные узоры на оконном стекле.

 

Назад: Глава 3. ТВОРЧЕСКИЙ ПЛАГИАТ
Дальше: Часть третья 1. ПРИНЦИПЫ