Книга: Революция растений
Назад: И все же они движутся!
Дальше: Семечко-попрыгунчик: Аистник цикутовый

Шишки и овес

Собственные движения растений требуют дополнительных энергетических затрат, в то время как на пассивное движение под воздействием внешних факторов тратится энергия окружающей среды. Например, многие растения используют разницу в дневном и ночном уровнях влажности для того, чтобы выполнить сложные перемещения. Весьма важной общей характеристикой всех двигательных активностей растений является, как уже неоднократно было отмечено выше, отсутствие у них специальных белковых структур, предназначенных для движения – мускулов. Их движения имеют гидравлическую природу, то есть в их основе лежит перемещение воды – парообразной либо жидкой, сквозь растительную ткань.
Активное движение является прямым следствием изменения тургора клетки, вызванное осмотическим давлением воды на клеточную мембрану. Вода притекает в клетку при изменении концентраций клеточных растворов и вызывает рост давления на мембрану и стенки клетки, клетка раздувается и двигает части растения. Регулируя концентрацию клеточных растворов, растения могут совершать такие движения, как открытие-закрытие устьиц и цветов: мимоза может сложить листочки, а венерина мухоловка – схватить жертву. Пассивные же движения связаны с изменением гигроскопичности некоторых составляющих клеточной стенки. Эти составляющие типичны именно для растительной клетки; я бы даже сказал, что вместе с хлоропластом (клеточная органелла, ответственная за процесс фотосинтеза) они представляют собой фирменный бренд растений. На свете не существует более ничего подобного, такой устойчивой структуры у животных просто нет. Клеточные стенки служат растению чем-то вроде скелета, они обеспечивают устойчивость структуры и способность придерживаться определенной формы. Они состоят из волокон целлюлозы, встроенных в мягкую матрицу из структурных полисахаридов, гемицеллюлозы, растворимых белков и других веществ. Именно эта мягкая матрица, распухая в нужном месте при взаимодействии с молекулами воды, и обеспечивает открывание шишек, стручков акации, выбрасывание хвостиков с семенами журавельника или дикого овса.

 

Устьице томатного растения, сфотографированное под микроскопом. Через устьице в растение поступает необходимый для фотосинтеза углекислый газ CO2.

 

Чтобы у вас не осталось сомнений или вопросов, я рассмотрю в подробностях, как происходят эти пассивные движения на конкретном и весьма распространенном в природе примере.

 

Венерина мухоловка (Dionaea muscipula названа по одному из имен богини Афродиты) – хищное растение, произрастающее на болотах в штатах Флорида, Северная и Южная Каролина (США).

 

Шишка – плод хвойного дерева, в котором созревают семена, репродуктивные органы растения, в научной терминологии она называется стробилом. Шишка может служить примером хитроумного устройства из тканей, которые язык не повернется назвать мертвыми, хоть они и совершенно сухие на первый взгляд. Чешуйки шишки открываются, когда влажность воздуха падает, и закрываются, когда она повышается. Приходилось ли вам наблюдать, что происходит с шишкой в дождливый день? Если да, то вы наверняка заметили, что под дождем шишки плотно закрываются, чтобы перекрыть утечку семян, и напротив, в солнечный день они открываются, чтобы позволить семенам разлетаться. Видимо, эта стратегия связана с тем, что при высокой влажности семена лягут рядом с материнским растением, и это помешает эффективному их распространению на большое расстояние.

 

Шишка (или стробил) сформирована из древесных прицветников, между которыми вызревают семена голосеменных растений. У сосновой шишки чешуйки расположены по спирали, в соответствии с последовательностью Фибоначчи.

 

Как же работает этот, на первый взгляд, совсем простой, но на самом деле чрезвычайно сложный механизм (особенно если принять к сведению, что растения умудряются не затратить на него ни капли собственной энергии)? Секрет спрятан в строении чешуек. Они все состоят из двух видов растительной ткани, совершенно неразличимых невооруженным взглядом: только под микроскопом можно разглядеть в чем состоит разница. Внутренняя поверхность чешуйки состоит из особых склеренхимных волокон, как бы скрученных в микроскопические канатики, а на наружной поверхности расположены волокна-склереиды, более короткие и широкие. Эти волокна по-разному взаимодействуют с водой, они имеют разную гигроскопичность. Колин Доусон, Джулиан Ф. В. Винсент и Анна-Мария Рокка в 1997 году выяснили, что изменение влажности на 1 % при температуре 23 °С увеличивает длину склереид на 33 % по сравнению со склерехимными волокнами. Так была раскрыта тайна шишки: когда вода впитывается волокнами, или, наоборот, испаряется, ткани удлиняются или, соответственно, укорачиваются, и закрывают или открывают чешуйки.
Это явление легко воспроизводится в лаборатории (это можно сделать даже дома, достаточно погрузить шишку с раскрытыми чешуйками в воду), что позволило провести тщательные исследования, вдохновившие ученых на создание принципиально новых материалов с похожими свойствами. Представьте себе, какие возможности открываются перед материалом, способным изменяться в зависимости от влажности окружающей среды? В 2013 году профессор Мингминг Ма и его коллеги из МТИ создали полимерную пленку, способную впитывать воду из атмосферы, быстро расширяться и сжиматься, создавая движение. Эта ткань может развивать давление в 27 мегапаскалей и поднимать предметы в 380 раз тяжелее собственного веса. Кроме того, подключение к пленке пьезоэлектрического элемента позволило ученым создать электрическое напряжение с пиковым значением в 1 вольт; именно такое напряжение необходимо для питания микро- и наноэлектронных устройств. И все это только за счет изменения влажности.
Перед нами открываются удивительные возможности, позволяющие создать самые удивительные механизмы. К примеру, мы в настоящее время ищем возможность использовать это явление для питания датчиков, мониторящих электрическую активность деревьев. Но это не единственный способ использования полученных знаний. Системы подобного типа (которые, как вы можете заметить, имеют совсем крошечные размеры), вшитые в одежду, или в любые используемые нами в быту ткани, могут сделать их источниками энергии или чем-то вроде датчиков. Можно вообразить, как одежда, соприкасаясь с нашим телом, выдает нам клинические данные о состоянии организма или уровне стресса; занавески подают сигналы об атмосфере в комнате, или других параметрах нашего жилища. Совсем скоро все это вполне может стать реальностью, и значительная часть новых технологий или материалов будет основана на особенностях жизни растений.
Возможности пассивного движения растений на этом не заканчиваются. Можно упомянуть еще один способ двигаться, используемый растениями (с помощью длинных и тонких усиков, которые есть у многих трав), и в основе которого тоже лежит изменение влажности. Некоторые виды овса, такие как Овес бесплодный, Овес пустой и Овес бородатый, растущие в сельской местности или вдоль дорог, скручивают и раскручивают длинные усики в зависимости от влажности.

 

Род Avena (Овес) включает в себя множество видов, произрастающих в Европе, Африке и Азии. Многие из них используются в сельском хозяйстве уже тысячи лет, и служат пищей для людей и животных.

 

Долгое время подобные принципы использовались для создания точных гигрометров. Кстати, вы можете достаточно просто сделать свой собственный гигрометр, и увидите, как увеличение влажности воздуха способно спровоцировать движение. Как же его сделать? Вот несколько практических советов. Возьмите центральную часть усика овса, закрученную в спираль, и закрепите один из его концов в центре диска, на который нанесена шкала в угловых градусах. На другой конец прикрепите щепку или какой-нибудь другой указатель из твердого и легкого материала. Закройте самодельный прибор стеклом – вы стали обладателем точного природного гигрометра, единственный минус которого – недолговечность. Сохранность усика имеет ограничения, и его надо время от времени заменять.
Назад: И все же они движутся!
Дальше: Семечко-попрыгунчик: Аистник цикутовый