Книга: Сотворение Земли. Как живые организмы создали наш мир
Назад: Путь к финалу
На главную: Предисловие

Избранная библиография

Часть I
Амосов Р. А., Васин С. Л. Золотые микрофоссилии // Руды и металлы. 1993. № 36. С. 101–7.
Герман Т. Н. Органический мир миллиард лет назад. – Л.: Наука, 1990.
Герман Т. Н., Подковыров В. Н. Находки рифейских гетеротрофов в лахандинской серии Сибири // Палеонтологический журнал. 2010. № 4. С. 5–23.
Заварзин Г. А. Лекции по природоведческой микробиологии. – М.: Наука, 2003.
Заварзин Г. А. Эволюция прокариотной биосферы: Микробы в круговороте жизни. 120 лет спустя: Чтение им. С. Н. Виноградского. – М.: МАКС Пресс, 2011.
Козо-Полянский Б. М. Новый принцип биологии: очерк теории симбиогенеза. – Л.-М.: Пучина, 1924.
Мережковский К. С. Теория двух плазм как основа симбиогенезиса, нового учения о происхождении организмов. – Казань: типография Императорского ун-та, 1908.
Петров П. Ю. Микробные маты как источник карбонатных осадков в позднем докембрии; свита линок, средний рифей Туруханского поднятия Сибири // Литология и полезные ископаемые. 2001. № 2. С. 191–215.
Семихатов М. А., Раабен М. Е. Динамика глобального разнообразия строматолитов протерозоя. Ст. 2: Африка, Австралия, Северная Америка и общий синтез // Стратиграфия. Геологическая корреляция. 1996. № 1. С. 26–54.
Семихатов М. А., Серебряков С. Н. Сибирский гипостратотип рифея. – М.: Наука, 1983. (Тр. ГИН АН СССР. Вып. 367.)
Тимофеев Б. В. Древнепалеозойские отложения в Молдавии // Доклады АН СССР. 1952. Т. 36. № 6. С. 1207–9.
Фаминцын А. С. О роли симбиоза в эволюции организмов // Записки Императорской академии наук по физико-математическому отделению. Сер. VIII. Т. ХХ. 1907. № 3. С. 1–14.
Школьник Э. Л., Жегалло Е. А., Герасименко Л. М., Шувалова Ю. В. Углеродистые породы и золото в них бассейна Витватерсранд, ЮАР, – исследование с помощью электронного микроскопа. – М.: Эслан, 2005.
Adams K. A. et al. 2012. Optical reflectivity of solid and liquid methane: Application to spectroscopy of Titan’s hydrocarbon lakes // Geophysical Research Letters, 39, L04309. DOI: 10.1029/2011GL049710
Agić H., Moczydłowska M., Yin L. 2015. Affinity, life cycle, and intracellular complexity of organic-walled microfossils from the Mesoproterozoic of Shanxi, China // Journal of Paleontology, 89, 28–50.
Aulbach S., Stagno V. 2016. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle // Geology, 44, 751–4.
Bachan A., Kump L. R. 2015. The rise of oxygen and siderite oxidation during the Lomagundi Event // Proceedings of the National Academy of Sciences of the USA, 112, 6562–7.
Bao H., Lyons J. R., Zhou C. 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation // Nature, 453, 504–6.
Barboni M. et al. 2017. Early formation of the Moon 4.51 billion years ago // Science Advances, DOI: 10.1126/sciadv.1602365
Bekker A. et al. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes // Economic Geology, 105, 467–508.
Bengtson S., ed. 1994. Early Life on Earth. New York: Columbia Univ. Press, 630 p. (Nobel Symposium, 84.)
Bengtson S. et al. 2017. Fungus-like mycelia fossils in 2.4-billion-year-old vesicular basalts // Nature Ecology & Evolution, 1, 0141. DOI: 10.1038/s41559-017-0141
Bernard S., Papineau D. 2014. Graphitic carbons and biosignatures // Elements, 10, 435–40.
Bosak T., Liang B., Sim M. S., Petroff A. P. 2009. Morphological record of oxygenic photosynthesis in conical stromatolites // Proceedings of the National Academy of Sciences of the USA, 106, 10939–43.
Bosak T., Macdonald F., Lahr D., Matys E. 2011. Putative Cryogenian ciliates from Mongolia // Geology, 39, 1123–6.
Bose P. K. et al. 2012. Sedimentation patterns during the Precambrian: A unique record? // Marine and Petroleum Geology, 33, 34–68.
Bouvier A., Wadhwa M. 2010. The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion // Nature Geoscience, 3, 637–41.
Brasier M. D., Antcliffe J., Saunders M., Wacey D. 2015. Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries // Proceedings of the National Academy of Sciences of the USA, 112, 4859–64.
Brocks J. J. et al. 2017. The rise of algae in Cryogenian oceans and the emergence of animals // Nature, 548, 578–81.
Brush S. G. 1989. The age of the Earth in the twentieth century // Earth Sciences History, 8 (2), 170–82.
Butterfield N. J. 2009. Modes of pre-Ediacaran multicellularity // Precambrian Research, 173, 201–11.
Butterfield N. J. 2015. Early evolution of the Eukaryota // Palaeontology, 58, 5–17.
Claire M. W. et al. 2014. Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere // Geochimica & Cosmochimica Acta, 141, 365–80.
Cockell C. S., Kelly L. C., Marteinsson V. 2013. Actinobacteria – An ancient phylum active in volcanic rock weathering // Geomicrobiology Journal, 30, 706–20.
Cohen P. A., Macdonald F. A. 2015. The Proterozoic record of eukaryotes // Paleobiology, 41, 610–32.
Cohen P. A., Schopf J. W., Butterfield N. J., Kudryavtsev A. B., Macdonald F. A. 2011. Phosphate biomineralization in mid-Neoproterozoic protists // Geology, 39, 539–42.
Coughenour L. C., Archer A. W., Lacovara J. K. 2013. Calculating Earth-Moon system parameters from sub-yearly tidal deposit records: An example from the carboniferous tradewater formation // Sedimentary Geology, 295, 67–76.
Dalrymple G. B. 1994. The Age of the Earth. Stanford: Stanford Univ. Press, 474 p.
Darwin C. 1871. Darwin Correspondence Project. «Letter No. 7471». http://www.darwinproject.ac.uk/Letter/DCPLETT7471.xml
Darwin G. H. 1879. On the precession of a viscous spheroid and the remote history of the Earth // Philosophical Transactions of the Royal Society of London, 170, 447–530.
Dickin A. P. 2005. Radiogenic Isotope Geology, 2nd ed. Cambridge: Cambridge Univ. Press, 492 p.
Dodd M. S. et al. 2017. Evidence for early life in Earth’s oldest hydrothermal vent precipitates // Nature, 543, 60–4.
Embley T. M., Martin W. 2006. Eukaryotic evolution, changes and challenges // Nature, 440, 623–30.
Eriksson P. G., Catuneanu O., Sarkar S., Tirsgaard H. 2005. Patterns of sedimentation in the Precambrian // Sedimentary Geology, 176, 17–42.
Falcón L. I., Magallon S., Castillo A. 2012. Dating the cyanobacterial ancestor of the chloroplast // The ISME Journal, 4, 777–83.
Fedonkin M. A., Yochelson E L. 2002. Middle Proterozoic (1.5 Ga) Horodyskia moniliformis Yochelson and Fedonkin, the oldest known tissue-grade colonial eukaryote // Smithsonian Contributions to Paleobiology, 94, 1–29.
Ferla M. P., Thrash J. C., Giovannoni S. J., Patrick W. M. 2013. New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability // PLoS ONE, 8 (12), e83383. DOI: 10.1371/journal.pone.0083383
Fischer W. W., Knoll A. H. 2009. An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation // Geological Society of America Bulletin, 121, 222–35.
Fralich P., Carter J. E. 2011. Neoarchean deep marine temperature: Evidence from turbidite successions // Precambrian Research, 191, 78–84.
Gaidos E. J., Güdel M., Blake G. A. 2000. The faint young Sun paradox: An observational test of an alternative solar model // Geophysical Research Letters, 27, 501–3.
Gaucher E. A., Govindarajan S., Ganesh O. K. 2008. Palaeotemperature trend for Precambrian life inferred from resurrected proteins // Nature, 451, 704–7.
Geldsetzer H. H. J., James N. P., Tebbutt E., eds. 1989. Reefs, Canada and Adjacent Area // Memoir of the Canadian Society of Petroleum Geologists, 13, 775 p.
Geer G. de. 1912. A geochronology of the last 12,000 years // International Geological Congress, 11th, Stockholm, 1910, Report, 1, 241–53.
Gradstein F. M., Ogg J. G., Schmitz M. D., Ogg G. M., eds. 2012. The Geologic Time Scale 2012. V. 1. Amsterdam: Elsevier, 1144 p.
Grosch E. G., Hazen R. M. 2015. Microbes, mineral evolution, and the rise of microcontinents – Origin and coevolution of life with early Earth // Astrobiology, 15 (10). DOI: 10.1089/ast.2015.1302
Grotzinger J. P., Kasting J. F. 1993. New constraints on Precambrian ocean composition // The Journal of Geology, 101, 235–43.
Grotzinger J. P., Knoll A. H. 1999. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? // Annual Review of Earth and Planetary Sciences, 27, 313–58.
Gumsley A. P. et al. 2017. Timing and tempo of the Great Oxidation Event // Proceedings of the National Academy of Sciences of the USA, 114, 1811–6.
Habicht K. S., Gade M., Thamdrup B., Berg P., Canfield D. E. 2002. Calibration of sulphate levels in the Archean ocean // Science, 298, 2372–4.
Hallbauer D. K. 1978. Witwatersrand gold deposits. Their genesis in the light of morphological studies // Gold Bulletin, 11 (1), 18–23.
Halverson G. P. et al. 2005. Towards a Neoproterozoic composite carbon-isotope record // Geological Society of America Bulletin, 117, 1181–207.
Hao J., Sverjensky D. A., Hazen R. M. 2017. A model for late Archean chemical weathering and world average river water // Earth and Planetary Science Letters. DOI: 10.1016/j.epsl.2016.10.021.
Hazen R. M. et al. 2008. Mineral evolution // American Mineralogist, 93, 1693–1720.
Hazen R. M. et al. 2011. Needs and opportunities for mineral evolution research // American Mineralogist, 96, 953–63.
Heinrich C. A. 2015. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life // Nature Geoscience, 8, 206–9.
Hoffman P. F. et al. 2017. Snowball Earth climate dynamics and Cryogenian Geology-Geobiology // Science Advances, 3, e1600983. DOI: 10.1126/sciadv.1600983
Husnik F., McCutcheon J. P. 2016. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis // Proceedings of the National Academy of Sciences of the USA, 113, E5416–24.
Igisu M. et al. 2009. Micro-FTIR signature of bacterial lipids in Proterozoic microfossils // Precambrian Research, 173, 19–26.
Javaux E. J., Marshall C. P., Bekker A. 2010. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits // Nature, 463, 934–8.
Johnson J. E. et al. 2013. Manganese-oxidizing photosynthesis before the rise of cyanobacteria // Proceedings of the National Academy of Sciences of the USA, 110, 11238–43.
Jørgensen B. B., Cohen Y., Revsbech N. P. 1986. Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat // Applied and Environmental Microbiology, 51, 408–17.
Kah L. C., Riding R. 2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria // Geology, 35, 799–802.
Kasting J. F. 2005. Methane and climate during the Precambrian era // Precambrian Research, 137, 119–29.
Kaufman A. J., Xiao S. 2003. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils // Nature, 425. 279–82.
Kemp A. E. S., ed.1996. Palaeoclimatology and Palaeoceanography from Laminated Sediments. Bath: Geol. Soc. London. 258 p. (Geological Society of London, Special Publication, 116).
Kempe S., Kazmierczak J. 2002. Biogenesis and early life on Earth and Europa: Favored by an alkaline ocean? // Astrobiology, 2, 123–30.
Kirschvink J. L., Kopp R. E. 2008. Palaeoproterozoic ice houses and the evolution of oxygen-mediated enzymes: the case for a late origin of photosystem II // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 2755–65.
Koeksoy E., Halama M., Konhauser K. O., Kappler A. 2016. Using modern ferruginous habitats to interpret Precambrian banded iron formation deposition // International Journal of Astrobiology, 15, 205–17.
Knoll A. H., Javaux E. J., Hewitt D., Cohen P. 2006. Eukaryotic organisms in Proterozoic oceans // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 1023–38.
Knoll A. H., Canfield D. E., Konhauser K. O., eds. 2012. Fundamentals of Geobiology, 1st ed. Chichester: Wiley-Blackwell, 456 p.
Konhauser K. O., Kappler A., Roden E. E. 2011. Iron in microbial metabolism // Elements, 7, 89–93.
Kump L. R., Barley M. E. 2007. Increased subaerial volcanism and the rise of athmospheric oxygen 2.5 billion years ago // Nature, 448, 1033–6.
Lécuyer C. 2016. Seawater residence times of some elements of geochemical interest and the salinity of the oceans // Bulletin de la Société géologique de France, 187, 245–60.
Lepland A. et al. 2014. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis // Nature Geoscience, 7, 20–4.
Li Z.-X., Evans D. A. D., Halverson G. P. 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland // Sedimentary Geology, 294, 219–32.
Li Z.-X., Evans D. A. D., Murphy J. B., eds. 2016. Supercontinent Cycles Through Earth History. Bath: Geol. Soc. London, 297 p. (Geological Society of London, Special Publication, 424).
Liu X.-M. et al. 2016. Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates // Geochemical Perspectives Letters, 2, 24–34.
Lyell C. 1851. On fossil rain-marks of the Recent, Triassic, and Carboniferous periods // Quarterly Journal of the Geological Society, 7, 238–47.
Lyons T. W., Reinhard C. T., Planavsky N. J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere // Nature, 506, 307–15.
Marin-Carbonne J., Robert F., Chaussidon M. 2014. The silicon and oxygen isotope composition of Precambrian cherts: A record of oceanic paleo-temperatures? // Precambrian Research, 247, 223–34.
Marshall C. P., Javaux E. J., Knoll A. H., Walter M. R. 2005. Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: A new approach to Palaeobiology // Precambrian Research, 138, 208–24.
Martin F. 1993. Acritarchs: A review // Biological Reviews, 68, 475–538.
Marty B., Zimmermann I., Pujol M., Burgess R., Philippot P. 2013. Nitrogen isotopic composition and density of the Archean atmosphere // Science, 342, 101–4.
Matthews R. K., Frohlich C., Duffy A. 1997. Orbital forcing of global change throughout the Phanerozoic: A possible stratigraphic solution to the eccentricity phase problem // Geology, 25, 807–10.
Melezhik V. A., ed. 2013. Reading the Archive of Earth’s Oxygenation. V. 3: Global Events and the Fennoscandian Arctic Russia – Drilling Early Earth Project. Berlin; Heidelberg: Springer, p. 1048–1552.
Michaelian K., Simeonov A. 2015. Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum // Biogeosciences, 12, 4913–37.
Moczydłowska M., Landing E., Zang W., Palacios T. 2011. Proterozoic phytoplankton and timing of chlorophyte algae origins // Palaeontology, 54, 721–33.
Nance R. D., Murphy J. B., Santosh M. 2013. The supercontinent cycle: A retrospective essay // Gondwana Research, 25, 4–29.
Noffke N., Christian D., Wacey D., Hazen R. M. 2013. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia // Astrobiology, 13, 1103–24.
Norman M. D., Borg L. E., Nyquist L. E., Bogard D. D. 2003. Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: Clues to the age, origin, structure, and impact history of the lunar crust // Meteoritics & Planetary Science, 38, 645–61.
Nutman A. P. et al. 2015. 3806 Ma Isua rhyolites and dacites affected by low temperature Eoarchaean surficial alteration: Earth’s earliest weathering // Precambrian Research, 268, 323–38.
Och L. M., Shields-Zhou G. A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling // Earth-Science Reviews, 110, 26–57.
Omelon C. R. et al. 2013. Microstructure variability in freshwater microbialites, Pavilion Lake, Canada // Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 62–70.
Papineau D., Mojzsis S. J., Karhu J. A., Marty B. 2005. Nitrogen isotopic composition of ammoniated phyllosilicates: Case studies from Precambrian metamorphosed sedimentary record // Chemical Geology, 216, 37–58.
Partin C. A. et al. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales // Earth and Planetary Science Letters, 369–370, 284–93.
Payne J. L. et al. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity // Proceedings of the National Academy of Sciences of the USA, 106, 24–27.
Pavlov A. A., Kasting J. F., Eigenbrode J. L., Freeman K. H. 2001. Organic haze in Earth’s early atmosphere: Source of low-13C Late Archean kerogens? // Geology, 29, 1003–6.
Petroff A. P. et al. 2010. Biophysical basis for the geometry of conical stromatolites // Proceedings of the National Academy of Sciences of the USA, 107, 9956–61.
Petrov P. Yu., Semikhatov M. A. 2001. Sequence organization and growth patterns of late Mesoproterozoic stromatolite reefs: an example from the Burovaya Formation, Turukhansk Uplift, Siberia // Precambrian Research, 111, 257–81.
Phoenix V. R., Konhauser K. O. 2008. Benefits of bacterial biomineralization // Geobiology, 6, 303–8.
Planavsky N. J. et al. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals // Science, 346, 635–8.
Pufahl P. K., Hiatt E. E. 2012. Oxygenation of the Earth’s atmosphere – ocean system: A review of physical and chemical sedimentologic responses // Marine and Petroleum Geology, 32, 1–20.
Ratti S., Knoll A. H., Giordano M. 2013. Grazers and phytoplankton growth in the oceans: an experimental and evolutionary perspective // PLoS ONE, 8 (10), e77349. DOI: 10.1371/journal.pone.0077349
Reddy S. M., Mazumder R., Evans D. A. D., Collins A. S., eds. 2009. Palaeoproterozoic Supercontinents and Global Evolution. Bath: Geol. Soc. London, 272 p. (Geological Society of London, Special Publication, 323).
Reimer P. J. et al. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP // Radiocarbon, 46, 1029–58.
Reimink J. R. et al. 2016. No evidence for Hadean continental crust within Earth’s oldest evolved rock unit // Nature Geoscience, 9, 777–80.
Reith F., Brugger J., Zammit C. M., Nies D. H., Southam G. 2013. Geobiological cycling of gold: From fundamental process understanding to exploration solution // Minerals, 3, 367–94.
Riding R. 2008. Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites // Geologia Croatica, 61, 73–103.
Rosing M. T., Bird D. K., Sleep N. H., Glassley W., Albarede F. 2006. The rise of continents – An essay on the geologic consequences of photosynthesis // Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 99–113.
Rutherford E. 1904. The radiation and emanation of radium // Technics, 1–16, 171–5.
Sagan C., Mullen G. 1972. Earth and Mars: Evolution of atmospheres and surface temperatures // Science, 177, 52–6.
Schidlowski M. 1998. Application of stable carbon isotopes to early biochemical evolution on Earth // Annual Review of Earth and Planetary Sciences, 15, 47–72.
Schoell M., Wellmer F.-W. 1981. Anomalous 13С depletion in early Precambrian graphites from Superior Province, Canada // Nature, 290, 696–9.
Schopf J. W., Klein C., eds. 1992. The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge et al.: Cambridge Univ. Press, 1348 p.
Schopf J. W. et al. 2017. SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope composition // Proceedings of the National Academy of Sciences of the USA. DOI: 10.1073/pnas.1718063115
Schwartzman D. W., Lineweaver C. H. 2004. The hyperthermophilic origin of life revisited // Biochemical Society Transactions, 32, 168–71.
Searle R., ed. 2016. Mid-Ocean Ridges. Cambridge: Cambridge Univ. Press, 330 p.
Sergeev V. N., Knoll A. H., Vorob’eva N. G., Sergeeva N. D. 2016. Microfossils from the lower Mesoproterozoic Kaltasy Formation, East-European Platform // Precambrian Research, 278, 87–107.
Shih P. M., Hemp J., Ward L. M., Matzke N. J., Fischer W. W. 2017. Crown group Oxyphotobacteria postdate the rise of oxygen // Geobiology, 15, 19–29.
Som S. M., Catling D. C., Harnmeijer J. P., Polivka P. M., Buick R. 2012. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints // Nature, 484, 359–62.
Som S. M. et al. 2016. Earth air pressure 2.7 billion years ago constrained to less than half of modern levels // Nature Geoscience, DOI: 10.1038/NGEO2713
Strother P. K. Battison L., Brasier M. D., Wellman C. H. 2011. Earth’s earliest non-marine eukaryotes // Nature, 473, 505–9.
Stüeken E. E. et al. 2016. Modelling pN2 through geological time: Implications for planetary climates and atmospheric biosignatures // Astrobiology, 16 (12). DOI: 10.1089/ast.2016.1537
Stuiver M., Kromer B., Becker B., Ferguson C. W. 1986. Radiocarbon age calibration back to 13, 300 years BP and the 14C age matching of the German oak and US bristlecone pine chronologies // Radiocarbon, 28, 969–79.
Sugitani K. et al. 2015. Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils // Geobiology, 13, 507–21.
Tang Q. et al. 2013. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance // Precambrian Research, 236, 157–81.
Tartèse R., Chaussidon M., Gurenko A., Delarue F., Robert F. 2017. Warm Ar oceans reconstructed from oxygen isotope composition of early-life remnants // Geochemical Perspective Letters, 3, 55–65.
Tziperman E., Halevy I., Johnston D. T., Knoll A. H., Schrag D. P. 2011. Biologically induced initiation of Neoproterozoic snowball-Earth events // Proceedings of the National Academy of Sciences of the USA, 108, 15091–6.
Tyler S. A., Barghoorn E. S. 1954. Occurrence of structurally preserved plants in Precambrian rocks of the Canadian Shield // Science, 119, 606–8.
Ueno Y. et al. 2009. Geological sulphur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox // Proceedings of the National Academy of Sciences of the USA, 106, 14784–9.
Valley J. W., Peck W. H., King E. M., Wilde S. A. 2002. A cool early Earth // Geology, 30, 351–4.
Wacey D., Kilburn M. R., Saunders M., Cliff J., Brasier M. D. 2011. Microfossils of 3.4-billion-year-old rocks of Western Australia // Nature Geoscience, 4, 698–702.
Wacey D. et al. 2012. Taphonomy of very ancient microfossils from the ~3400 Ma Strelley Pool Formation and ~1900 Ma Gunflint Formation // Precambrian Research, 220–221, 234–250.
Warren J. K. 2016. Evaporites: A Compendium. Berlin: Springer, 1600 p.
Wegener A. 1922. Die Entstehung der Kontinente und Ozeane (On the Origin of Continents and Oceans. Engl. transl., 1924). London: Methuen, 212 p.
White R. A. III et al. 2016. Metagenomic analysis suggests modern freshwater microbialites harbor a distinct core microbial community // Frontiers in Microbiology, 6, 1531. DOI: 10.3389/fmicb.2015.01531
Wilde S. A., Valley J. W., Peck W. H., Graham C. M. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago // Nature, 409, 175–8.
Williams G. E. 2000. Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit // Reviews of Geophysics, 38, 37–59.
Wilson J. T. 1966. Did the Atlantic Ocean close and re-open again? // Nature, 211, 676–81.
Xiao S., Kaufman A. J., eds. 2006. Neoproterozoic Geobiology and Paleobiology. Berlin; Heidelberg; Dordrecht: Springer, 300 p. (Topics in Geobiology Series, 27).
Zaremba-Niedzwiedzka K. et al. 2016. Asgard archaea illuminate the origin of eukaryotic cellular complexity // Nature, 541, 353–8.
Zhu S. et al. 2016. Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China // Nature Communications, 7, 11500. DOI: 10.1038/ncomms11500
Часть II
Бурзин М. Б. Древнейший хитридиомицет (Mycota, Chytridiomycetes incertae sedis) из верхнего венда Восточно-Европейской платформы // Фауна и экосистемы геологического прошлого. [Отв. ред. Б. С. Соколов, А. Б. Ивановский]. – М.: Наука, 1993. C. 21–33.
Бурзин М. Б. Микробные бентосные сообщества позднего венда // Проблемы доантропогенной эволюция биосферы. [Отв. ред. А. Ю. Розанов]. – М.: Наука, 1993. С. 282–93.
Иванцов А. Ю. Новая реконструкция кимбереллы – проблематического вендского многоклеточного животного // Палеонтологический журнал. 2009. № 6. С. 3–12.
Иванцов А. Ю. Следы питания проартикулят – вендских многоклеточных животных // Палеонтологический журнал. 2011. № 3. С. 3–13.
Казаков А. В. Химическая природа фосфатного вещества фосфоритов и их генезис. – Л.: Изд-во Леноблисполкома и Ленсовета, 1937. (Тр. НИИ по удобрениям и инсектофунгицидам, Т. 139).
Семихатов М. А., Комар В. А., Серебряков С. Н. Юдомский комплекс стратотипической местности. – М.: Наука, 1970. (Тр. ГИН АН СССР, вып. 210).
Соколов Б. С. О возрасте древнейшего осадочного покрова Русской платформы // Известия АН СССР. Сер. геологическая. 1952. № 5. С. 21–31.
Соколов Б. С. Очерки становления венда. – М.: КМК Лтд., 1998.
Федонкин М. А. Органический мир венда. – М.: ВИНИТИ, 1983. (Итоги науки и техники. Стратиграфия. Палеонтология. Т. 12).
Федонкин М. А. Бесскелетная фауна венда и ее место в эволюции Metazoa. – М.: Наука, 1987. (Тр. ПИН АН СССР. Т. 226).
Algeo T. G., Luo G. M., Song H. Y., Lyons T. W., Canfield D. E. 2015. Reconstruction of secular variation in seawater sulphate concentrations // Biogeosciences, 12, 2131–51.
Arvidson R. S., Mackenzie F. T. 1997. Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution // Aquatic Geochemistry, 2, 273–98.
Bailey J. V. et al. 2013. Filamentous sulphur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis // Geobiology, 11, 397–405.
Bengtson S., Rasmussen B., Krapez B. 2007. The Paleoproterozoic megascopic Stirling biota // Paleobiology, 33, 351–81.
Bjerrum C. J., Canfield D. E. 2011. Towards a quantitative understanding of the late Neoproterozoic carbon cycle // Proceedings of the National Academy of Sciences of the USA, 108, 5542–7.
Bobrovskiy I., Hope J. M., Krasnova A., Ivantsov A., Brocks J. J. 2018. Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis // Nature Ecology & Evolution. DOI: 10.1038/s41559-017-0438-6
Bontognali T. R. R. et al. 2010. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates) // Sedimentology, 57, 824–44.
Bowyer F., Wood R. A., Poulton S. W. 2017. Controls on the evolution of Ediacaran metazoan ecosystem: A redox perspective // Geobiology, 15, 516–51.
Brasier M. D., Antcliffe J. B. 2008. Dickinsonia from Ediacara: A new look at morphology and body construction // Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 311–323.
Brasier M. D., Antcliffe J. B. 2009. Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis // Journal of the Geological Society of London, 166, 2, 363–84.
Brasier M. D., Callow R. H. T. 2007. Changes in the patterns of phosphatic preservation across the Precambrian – Cambrian transition // Memoirs of the Association of Australasian Palaeontologists, 34, 377–89.
Brennan S. T., Lowenstein T. K., Horita J. 2004. Seawater chemistry and the advent of biocalcification // Geology, 32, 473–6.
Buckland W. 1829. On the discovery of coprolites, or fossil faeces, in the Lias at Lyme Ridges, and in other formations // Transactions of the Geological Society of London, 3, 223–36.
Buick R., Des Marais D. J., Knoll A. H. 1995. Stable isotopic composition of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia // Chemical Geology, 123, 153–71.
Campbell I. H., Squire R. J. 2010. The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event // Geochimica et Cosmochimica Acta, 74, 4187–206.
Chen L., Xiao S., Pang K., Zhou C., Yuan X. 2014. Cell differentiation and germ-soma separation in Ediacaran animal-like fossils // Nature, 516, 238–41.
Cook P. J., Shergold J. H. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian – Cambrian boundary // Nature, 308, 231–36.
Creveling J. R. et al. 2014. Phosphorus sources for phosphatic Cambrian carbonates // Geological Society of America Bulletin, 126, 145–63.
Cumming V. M., Poulton S. W., Rooney A. D., Selby D. 2013. Anoxia in the terrestrial environment during the late Mesoproterozoic // Geology, 41, 583–6.
Cunningham J. A. et al. 2017. The Weng’an Biota (Doushantuo Formation): an Ediacaran window on soft-bodied and multicellular microorganisms // Journal of the Geological Society. DOI: 10.1144/jgs2016–142
Glaessner M. F. 1984. The Down of Animal Life: A Biohistorical Study. Cambridge: Cambridge Univ. Press. 244 p.
Grazhdankin D. 2014. Patterns of evolution of the Ediacaran soft-bodied biota // Journal of Paleontology, 88, 269–83.
Ghisalberti M. et al. 2014. Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes // Current Biology, 24, 1–5. DOI: 10.1016/j.cub.2013.12.017
Hardisty D. S. et al. 2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate // Earth and Planetary Science Letters, 463, 159–70.
Hood A.v.S., Wallace M. W. 2015. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia // Precambrian Research, 261, 96–111.
Hoyal Cuthill J. F., Conway Morris S. 2014. Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan // Proceedings of the National Academy of Sciences of the USA, 111, 13122–6.
Huntley J. W., Xiao S., Kowalewski M. 2006. 1.3 Billion years of acritarch history: An empirical morphospace approach // Precambrian Research, 144, 52–68.
Igisu M. et al. 2014. FTIR microspectroscopy of Ediacaran phosphatised microfossils from the Doushantuo Formation, Weng’an, South China // Gondwana Research, 25, 1120–38.
Ishikawa T. et al. 2011. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: High-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China // Precambrian Research, 225, 190–208.
Ivantsov A. Yu., Fedonkin M. A. 2002. Conulariid-like fossil from the Vendian of Russia: A metazoan clade across the Proterozoic/Palaeozoic boundary // Palaeontology, 45, 1219–29.
Knoll A. H., Walter M. R., Narbonne G. M., Christie-Blick N. 2006. The Ediacaran Period: a new addition to the geologic time scale // Lethaia, 39, 13–30.
Lafl amme M., Xiao S., Kowalewski M. 2009. Osmotrophy in modular Ediacara organisms // Proceedings of the National Academy of Sciences of the USA, 1060, 14438–43.
Liu A. G., McIlroy D., Matthews J. J., Brasier M. D. 2012. A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland // Journal of the Geological Society of London, 169, 395–403.
Lloyd S. J. et al. 2012. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and eastern California // Earth and Planetary Science Letters, 339–340, 79–94.
McKenzie J. A., Vasconcelos C. 2009. Dolomite Mountains and the origin of dolomite rock of which they mainly consist: historical developments and new perspective // Sedimentology, 56, 205–19.
Mentel M. et al. 2014. Of early animals, anaerobic mitochondria, and a modern sponge // Bioessays, 36, 924–32.
Mitchell E. G. et al. 2015. Reconstructing the reproductive mode of an Ediacaran macro-organism // Nature, 524, 343–6.
Notholt A. J. G., Jarvis I., eds. 1990. Phosphorite Research and Development. London: Geol. Soc., 326 p. (Geological Society of London, Special Publication, 52).
Poulton S. W., Fralick P. W., Canfield D. E. 2010. Spatial variability of oceanic redox structure 1.8 billion years ago // Nature Geoscience, 7, 3, 486–90.
Pratt B. 1998. Molar-tooth structure in Proterozoic carbonate rocks: Origin from synsedimentary earthquakes, and implications for the nature and evolution of basins and marine sediment // Geological Society of America Bulletin, 110, 1028–45.
Reinhard C. T. et al. 2017. Evolution of the global phosphorus cycle // Nature, 541, 386–9.
Roberson A. L., Roadt J., Halevy I., Kasting J. F. 2011. Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon // Geobiology, 9, 313–20.
Seilacher A. 1992. Vendobionta and Psammocorallia: Lost constructions of the Precambrian evolution // Journal of the Geological Society of London, 149, 607–13.
Shen B. et al. 2016. Molar tooth carbonates and benthic methane fluxes in Proterozoic ocean // Nature Communications, 7, 10317. DOI: 10.1038/ncomms10317.
Shields-Zhou G., Och L. 2011. The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences // GSA Today, 21, 4–11.
Singer A., Plotnick R., Laflamme M. 2013. Experimental fluid mechanics of an Ediacaran frond // Palaeontologia Electronica, 15, 2 (19A), 14 p. palaeo-electronica.org/content/2012-issue-2-articles/255-frond-biomechanics
Sperling E. A., Knoll A. H., Girgius P. R. 2015. The ecological physiology of Earth’s second oxygen revolution // Annual Review of Ecology, Evolution, and Systematics, 46, 215–35.
Sperling E. A. et al. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation // Nature, 523, 451–4.
Tostevin R. et al. 2016. Low-oxygen waters limited habitable space for early animals // Nature Communications, 7, 12818. DOI: 10.1038/ncomms12818
Vasconcelos C. et al. 2006. Lithifying microbial mats in Lagoa Vermelha, Brazil: modern Precambrian relics? // Sedimentary Geology, 185, 175–83.
Wallace M. W. et al. 2015. The Cryogenian Balcanoona reef complexes of the Northern Flinders Ranges: Implications for Neoproterozoic ocean chemistry // Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 320–36.
Wood R. A., Grotzinger J. P., Dickson J. A. D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia // Science, 296, 2383–6.
Wood R. A. et al. 2015. Dynamic redox conditions control late Ediacaran metazoan ecosystems in the Nama Group, Namibia // Precambrian Research, 261, 252–71.
Wood R., Ivantsov A. Yu., Zhuravlev A. Yu. 2017. First macrobiota biomineralisation was environmentally triggered // Proceedings of the Royal Society of London B, 284, 20170059. DOI: 10.1098/rspb.2017.0059.
Wood R. A., Zhuravlev A. Yu., Sukhov S. S., Zhu M. & Zhao F. 2017. Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform // Geology, 45, 27–30.
Wright D. T. 1999. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia // Sedimentary Geology, 126, 147–57.
Xiao S., Knoll A. H., Yuan X., Pueschel C. M. 2004. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae // American Journal of Botany, 91, 214–27.
Xiao S. et al. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan // Proceedings of the National Academy of Sciences of the USA, 102, 10227–32.
Xiao S., Yuan X., Steiner M., Knoll A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China // Journal of Paleontology, 76, 347–76.
Yin Z. et al. 2013. Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng’an Biota, South China // Precambrian Research, 225, 44–57.
Yin Z., Zhu M., Bottjer D. J., Zhao F., Tafforeau P. 2016. Meroblastic cleavage identifies some Ediacaran Doushantuo (China) embryo-like fossils as metazoans // Geology, 44, 735–8.
Yuan X., Chen Z., Xiao S., Zhou C., Hua H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes // Nature, 470, 390–3.
Zhu M., Zhuravlev A. Yu., Wood R. A., Zhao F., Sukhov S. S. 2017. A deep root for the Cambrian Explosion: Implications of new bio- and chemostratigraphy from the Siberian Platform // Geology. DOI: 10.1130/G38865.1.
Zhuravlev A. Yu. 1993. Were Ediacaran Vendobionta multicellulars? // Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 190, 299–314.
Zhuravlev A. Yu., Wood R. A. 2008. Eve of biomineralization: Controls on skeletal mineralogy // Geology, 36, 923–6.
Zhuravlev A. Yu., Gámez Vintaned J. A., Ivantsov A. Yu. 2009. First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin // Geological Magazine, 146, 775–80.
Zhuravlev A. Yu., Wood R. A., Penny A. M. 2015. Ediacaran skeletal metazoan revealed to be complex lophophorate // Proceedings of the Royal Society of London B, 282, 20151860. DOI: 10.1098/rspb.2015.1860.
Часть III
Ефремoв И. A. Тафономия и геологическая летопись. – М.: Изд-во АН СССР, 1950. (Тр. ПИН АН СССР. Т. 24. Вып. 1).
Журавлев A. Ю. Ранняя история Metazoa – взгляд палеонтолога // Журнал общей биологии. 2014. Т. 75. № 6. С. 411–65.
Иванцов A.Ю., Журавлев A.Ю., Kрaсилoв В.A., Легутa A.В., Meльникoвa Л.M., Урбанек А., Ушaтинскaя Г.T., Малаховская Я.Е. Уникальные синские местонахождения раннекембрийских организмов. Сибирская платформа. – М.: Наука, 2005. (Тр. ПИН РАН. Т. 284).
Aldridge R. J., Briggs D. E. G. 1986. Conodonts // Hoffman A., Nitecki M. H., eds. Problematic Fossil Taxa. New York: Oxford Univ. Press; Oxford: Clarendon Press, p. 227–39. (Oxford Monographs on Geology and Geophysics, 5).
Aldridge R. J. et al. 2006. Bromalites from the Soom Shale Lagerstätte (Upper Ordovician) of South Africa: Palaeoecological and palaeobiological implications // Palaeontology, 49, 857–71.
Babcock L. E., Robison R. A. 1989. Preference of Palaeozoic predators // Nature, 337, 695–6.
Bailey J. V., Corsetti F. A., Bottjer D. J., Marenco K. N. 2006. Microbially-mediated environmental influences on metazoan colonization of matground ecosystems: Evidence from the Lower Cambrian Harkless Formation // Palaios, 21, 215–26.
Bambach R. K., Bush A. M., Erwin D. H. 2007. Autecology and the filling of ecospace: Key metazoan radiations // Palaeontology, 50, 1–22.
Barskov I. S., Boiko M. S., Konovalova V. A., Leonova T. B., Nikolaeva S. V. 2008. Cephalopods in the marine ecosystems of the Paleozoic // Paleontological Journal, 42 (11), 1167–1284.
Bottjer D. J., Hagadorn J. W., Dornbos S. Q. 2000. The Cambrian substrate revolution // GSA Today, 10, 1–7.
Butterfield N. J. 2011. Animals and the invention of the Phanerozoic Earth system // Trends in Ecology and Evolution, 26, 81–7.
Cong P. et al. 2014. Brain structure resolves the segmental affinity of anomalocaridid appendages // Nature, 513, 538–42.
Cooper R. A., Rigby S., Loydell D. K., Bates D. E. B. 2012. Palaeoecology of the Graptoloidea // Earth-Science Reviews, 112, 23–41.
Daley A. C., Edgecombe G. D. 2014. Morphology of Anomalocaris canadensis from the Burgess Shale // Journal of Paleontology, 88, 68–91.
Danovaro R. et al. 2010. The first metazoan living in permanently anoxic conditions // BMC Biology, 8, 30. DOI: 10.1186/1741-7007-8-30
Donoghue P. C. J., Keating J. N. 2014. Early vertebrate evolution // Palaeontology, 57, 879–93.
Dornbos S. Q., Bottjer D. J., Chen J. 2005. Paleoecology of benthic metazoans in the Early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution // Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 47–67.
Droser M. D., Finnegan S. 2003. The Ordovician Radiation: A follow-up to the Cambrian Explosion? // Integrative and Comparative Biology, 43, 178–84.
Duan Y. et al. 2014. Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the Lower Cambrian Chengjiang Lagerstätte, South China // Gondwana Research, 25, 983–90.
Dunne J. A., Williams R. J., Martinez N. D., Wood R. A., Erwin D. H. 2008. Compilation and network analyses of Cambrian food webs // PLoS Biology, 6 (4), e102. DOI: 10.1371/journal.pbio.0060102
Esteve J., Hughes N. C., Zamora S. 2011. Purujosa trilobite assemblage and the evolution of trilobite enrollment // Geology, 39, 575–8.
Gámez Vintaned J. A., Liñán E., Navarro D., Zhuravlev A. Yu. 2017. The oldest Cambrian skeletal fossils of Spain (Cadenas Ibéricas, Aragón) // Geological Magazine. DOI: 10.1017/S0016756817000358
Harper D. A. T., Zhan R., Jin J. 2015. The Great Ordovician Biodiversification Event: Reviewing two decades of research on diversity’s big bang illustrated by mainly brachiopod data // Palaeoworld. 24, 75–85.
Haug J. T., Waloszek D., Haug C., Maas A. 2010. High-level phylogenetic analysis developmental sequences: The Cambrian †Martinssonia elongata, †Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution // Arthropod Structure & Development, 39, 154–73.
Haug J. T., Waloszek D., Maas A., Liu Y., Haug C. 2012. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian // Palaeontology, 55, 369–99.
Haug J. T., Caron J.-B., Haug C. 2013. Demecology in the Cambrian: synchronized molting in arthropods from the Burgess Shale // BMC Biology, 11, 64. DOI: 10.1186/1741-7007-11-64
Hints O. et al. 2010. Biodiversity patterns of Ordovician marine microphytoplankton from Baltica: Comparison with other fossil groups and sea-level changes // Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 161–73.
Holland P. W. H. 2015. Did homeobox gene duplications contribute to the Cambrian explosion? // Zoological Letters, 1, 1. DOI: 10.1186/s40851-014-0004-x
Janvier P. 1996. Early Vertebrates. Oxford: Oxford Univ. Press, 393 p. (Oxford Monographs on Geology and Geophysics, 33).
Klemetsen A. 2010. The charr problem revisited: exceptional phenotypic plasticity promotes ecological speciation in postglacial lakes // Freshwater Reviews, 3, 49–74.
Kowalewski M., Kelley P. H., eds. 2002. The Fossil Record of Predation // Paleontological Society Papers, 8, 1–398.
Kröger B., Vinther J., Fuchs D. 2011. Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules // Bioessays, 33, 602–13.
Krumbein W. E., Paterson D. M., Stal L. J., eds. 1994. Biostabilization of Sediments. Oldenburg: Bibliotheks und Informationssystem der Carl von Ossietzky Universität, 526 p.
Lamsdell J. C., Hoşgör I., Selden P. A. 2013. A new Ordovician eurypterid (Arthropoda: Chelicerata) from southeastern Turkey: Evidence for a cryptic Ordovician record of Eurypterida // Gondwana Research, 23, 354–66.
Lee M. S. Y., Soubrier J., Edgecombe G. D. 2013. Rates of phenotypic and genomic evolution during the Cambrian Explosion // Current Biology, 23, 1889–95.
Lenton T. M. et al. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era // Nature Geoscience, 7, 257–65.
Logan G. A. et al. 1995. Terminal Proterozoic reorganization of biogeochemical cycles // Nature, 376, 53–6.
Ma X., Edgecombe G. D., Hou X., Goral T., Strausfeld N. J. 2015. Preservational pathways of corresponding brains of a Cambrian euarthropod // Current Biology, 25, 1–7. DOI: 10.1016/j.cub.2015.09.063
Marshall D. J., Lamsdell J. C., Shpinev E., Braddy S. J. 2013. A diverse chasmataspidid (Arthropoda: Chelicerata) fauna from the Early Devonian (Lochkovian) of Siberia // Palaeontology, 57, 631–55.
Martin R. E., Quigg A., Podkovyrov V. 2008. Marine biodiversification in response to evolving phytoplankton stoichiometry // Palaeogeography, Palaeoclimatology, Palaeoecology, 258, 277–91.
Meysman F. J. R., Middelburg J. J., Heip C. H. R. 2006. Bioturbation: a fresh look at Darwin’s last idea // TRENDS in Ecology and Evolution, 21, 688–95.
Mills D. B., Canfield D. E. 2016. A trophic framework for animal origins // Geobiology, 15, 197–210.
Moysiuk J., Smith M. R., Caron J.-B. 2017. Hyoliths are Palaeozoic lophophorates // Nature, 541, 394–7.
Müller K. J., Walossek D. 1987. Morphology, ontogeny and life-habit of Agnostus pisiformis from the Upper Cambrian of Sweden // Fossils and Strata, 19, 1–124.
Ortega-Hernández J., Van Roy P., Lerosey-Aubril R. 2016. A new aglaspidid euarthropod with a six-segmented trunk from the Lower Ordovician Fezouata Konservat-Lagerstätte, Morocco // Geological Magazine, 253, 524–36.
Parker A. R. 2011. On the origin of optics // Optics & Laser Technology, 43, 323–9.
Penny A. M., Wood R. A., Zhuravlev A. Yu., Curtis A., Bowyer F., Tostevin R. 2017. Intraspecific variation in an Ediacaran skeletal metazoan: Namacalathus from the Nama Group, Namibia // Geobiology, 15, 81–93.
Pruss S. B., Finnegan S., Fischer W. W., Knoll A. H. 2011. Carbonates in skeleton-poor seas: New insights from Cambrian and Ordovician strata of Laurentia // Palaios, 25, 73–84.
Purnell M. A. 1995. Microwear on conodont elements and macrophagy in the first vertebrates // Nature, 374, 798–800.
Pushie M. J., Pratt B. R., Macdonald T. C., George G. H., Pickering I. J. 2014. Evidence for biogenic copper (hemocyanin) in the middle Cambrian arthropod Marrella from the Burgess Shale // Palaios, 29, 512–24.
Robson S. P., Pratt B. R. 2007. Predation of late Marjuman (Cambrian) linguliformean brachiopods from the Deadwood Formation of South Dakota, USA // Lethaia, 40, 19–32.
Seilacher A. 2007. Trace Fossil Analysis. Berlin; Heidelberg: Springer, 226 p.
Selden P. A. 1984. Autecology of Silurian eurypterids // Special Papers in Palaeontology, 32, 39–54.
Servais T. et al. 2010. The Great Ordovician Biodiversification Event (GOBE): The palaeoecological dimension // Palaeogeography, Palaeoclimatology, Palaeoecology, 294, 99–119.
Signor P. W., Vermeij G. J. 1994. The plankton and the benthos: Origins and early history of an evolving relationship // Paleobiology, 20, 297–319.
Siveter D. J., Williams M., Waloszek D. 2001. A phosphatocopid crustacean with appendages from the Lower Cambrian // Science, 293, 479–81.
Strausfeld N. J. et al. 2016. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems // Arthropod Structure & Development, 45, 152–72.
Tanaka G. et al. 2013. Chelicerate neural ground pattern in a Cambrian great appendage arthropod // Nature, 502, 364–7.
Tarhan L. G., Droser M. L., Planavsky N. J., Johnston D. T. 2015. Protracted development of bioturbation through the early Palaeozoic Era // Nature Geoscience, 8, 865–9.
Taylor A. M., Goldring R. 1993. Description and analysis of bioturbation and ichnofabric // Journal of the Geological Society of London, 150, 141–8.
Taylor P. D., Wilson M. A. 2003. Palaeoecology and evolution of marine hard substrate communities // Earth-Science Reviews, 62, 1–103.
Tevesz M. J. S., McCall P. L., eds. 1993. Biotic Interactions in Recent and Fossil Benthic Communities. New York: Plenum Press, 837 p.
Topper T. P., Zhang Z., Gutiérrez-Marco J. C., Harper D. A. T. 2017. The down of a dynasty: life strategies of Cambrian and Ordovician brachiopods // Lethaia. DOI: 10.1111/let.12229
Underwood C. J. 1993. The position of the graptolites within Lower Palaeozoic planktic ecosystems // Lethaia, 26, 189–202.
Vannier J. 2012. Gut content as direct indicators for trophic relationships in the Cambrian marine ecosystem // PLoS ONE, 7 (12), e52200. DOI: 10.1371/journal.pone.0052200
Vannier J., Chen J. 2005. Early Cambrian food chain: New evidence from fossil aggregates in the Maotianshan Shale biota, SW China // Palaios, 20, 3–26.
Vannier J. et al. 2007. Early Cambrian origin of modern food webs: evidence from predator arrow worms // Proceedings of the Royal Society of London B, 274, 627–33.
Vendrasco M. J., Checa A., Heimbrock W. P., Baumann S. D. J. 2013. Nacre in molluscs from the Ordovician of the Midwestern United States // Geosciences, 3, 1–29.
Whittington H. B. et al. 1997. Treatise on Invertebrate Paleontology. Part O: Trilobita, Revised. V. 1. Boulder, Colorado: Geol. Soc. Amer.; Lawrence, Kansas: Univ. Kansas, 530 p.
Wood R. A., Zhuravlev A. Yu. 2012. Escalation and ecological selectivity in the Cambrian radiation of skeletons // Earth-Science Reviews, 115, 249–61.
Wood R., Curtis A., Penny A., Zhuravlev A. Yu., Curtis-Walcott S., Iinpinge S., Bowyer F. 2017. Flexible and responsive growth strategy of the Ediacaran skeletal metazoan Cloudina from the Nama Group, Namibia // Geology, 45, 291–4.
Yang J., Ortega-Hernández J., Lan T., Hou J., Zhang X. 2016. A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China // Scientific Reports, 6, 27709. DOI: 10.1038/srep27709
Zacai A., Vannier J., Lerosey-Aubril R. 2015. Reconstructing the diet of a 505-million-years-old arthropod: Sidneyia inexpectans from the Burgess Shale fauna // Arthropod Structure & Development, 45, 200–20.
Zhao F. et al. 2014. Diversity and species abundance patterns of the early Cambrian (Series 2, Stage 3) Chengjiang Biota from China // Paleobiology, 40, 50–69.
Zhuravlev A. Yu., Riding R., eds. 2001. The Ecology of the Cambrian Radiation. New York: Columbia Univ. Press. 525 p.
Zhuravlev A. Yu., Gámez Vintaned J. A., Liñán E. 2011. The Palaeoscolecida and the evolution of the Ecdysozoa // Palaeontographica Canadiana, 31, 177–204.
Zhuravlev A. Yu., Naimark E. B., Wood R. A. 2015. Controls on the diversity and structure of earliest metazoan communities: early Cambrian reefs from Siberia // Earth-Science Reviews, 147, 18–29.
Часть IV
Бурзин М. Б. Докембрийские предтечи «пионеров суши» // Природа. 1998. № 3. С. 83–95.
Ивахненко М. Ф. Тетраподы Восточно-Европейского плакката – позднепалеозойского территориально-природного комплекса. – М.: Наука, 2001. (Тр. ПИН РАН. Т. 283).
Мейен С. В. Основы палеоботаники. Справочное пособие. – М.: Недра, 1987.
Мейен С. В. Листья на камне: Размышления о палеоботанике, геологии, эволюции и путях познания живого. – М.: ГЕОС, 2001. (Тр. ГИН РАН. Науч. – поп. сер., вып. 1).
Шмальгаузен И. И. Происхождение наземных позвоночных. – М.: Наука, 1964.
Ahlberg P. E., Clack J. A., Lukševičs E., Blom H., Zupiņš I. 2008. Ventastega curonica and the origin of tetrapod morphology // Nature, 453, 1199–1204.
Algeo T. J., Marenco P. J., Saltzman M. R. 2016. Co-evolution of oceans, climate, and the biosphere during the ‘Ordovician Revolution’: A review // Palaeogeography, Palaeoclimatology, Palaeoecology, 458, 1–11.
Anderson P. S. L., Friedman M., Ruta M. 2013. Late to the table: Diversification of tetrapod mandibular biomechanics lagged behind the evolution of terrestriality // Integrative and Comparative Biology, 53, 197–208.
Beerling D. J. et al. 1998. The influence of Carboniferous palaeoatmosphere on plant function: an experimental and modelling assessment // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353, 131–40.
Beerling D. J., Berner R. A. 2004. Feedback and the coevolution of plants and atmospheric CO2 // Proceedings of the National Academy of Sciences of the USA, 102, 1302–5.
Berner R. A. et al. 2000. Isotope fractionation and atmospheric oxygen: Implications for Phanerozoic O2 evolution // Science, 287, 1630–3.
Berry J. A., Beerling D. J., Franks P. J. 2010. Stomata: key players in the Earth system, past and present // Current Opinion in Plant Biology, 13, 233–40.
Bonneville S. et al. 2009. Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale // Geology, 37, 615–8.
Boyce C. K. et al. 2003. Chemical evidence for cell wall lignification and the evolution of tracheids in Early Devonian plants // International Journal of Plant Sciences, 164, 691–702.
Boyce C. K. et al. 2007. Devonian landscape heterogeneity recorded by a giant fungus // Geology, 35, 399–402.
Braudrick C. A., Dietrich W. E., Leverich G. T., Sklar L. S. 2009. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers // Proceedings of the National Academy of Sciences of the USA, 106, 16936–41.
Canoville A., Chinsamy A. 2017. Bone microstructure of pareiasaurs (Parareptilia) from the Karoo Basin, South Africa: Implications for growth strategies and lifestyle habits // The Anatomical Record, 300, 1039–66.
Clack J. A. 2007. Devonian climate change, breathing, and the origin of tetrapod stem group // Integrative and Comparative Biology, 47, 510–23.
Clement A. M., Long J. A. 2010. Air-breathing adaptation in a marine Devonian lungfish // Biology Letters, 6, 509–12.
Coates M. I., Ruta M., Friedman M. 2008. Ever since Owen: Changing perspectives on the early evolution of tetrapods // Annual Review of Ecology, Evolution, and Systematics, 39, 571–92.
Davies N. S., Gibling M. R. 2010. Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants // Earth-Science Reviews, 98, 171–200.
DiMichele W. A., Phillips T. L. 1994. Paleobotanical and paleoecological constraints on models of peat formation in the Late Carboniferous of Euramerica // Palaeogeography, Palaeoclimatology, Palaeoecology, 106, 39–90.
Dudley R. 1998. Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance // Journal of Experimental Biology, 201, 1043–50.
Dunlop J. A., Anderson L. I., Kerp H., Hass H. 2004. A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland // Transactions of the Royal Society of Edinburgh: Earth Sciences, 94 (for 2003), 341–54.
Edwards D. 2003. Xylem in early tracheophytes // Plant, Cell and Environment, 26, 57–72.
Edwards D., Kerp H., Hass H. 1998. Stomata in early land plants: an anatomical and ecophysiological approach // Journal of Experimental Botany, 49, Spec. issue, 255–78.
Fayers S. R., Trewin N. H. 2005. A hexapod from the Early Devonian Windyfield Chert, Rhynie, Scotland // Palaeontology, 48, 1117–30.
Feng Z., Schneider J. W., Labandeira C. C., Kretzschmar R., Rößler R. 2014. A specialized feeding habit of Early Permian oribatid mites /// Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 121–5.
Floudas D. et al. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes // Science, 336, 1715–9.
Gadd G. M. 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation // Mycological Research, 111, 3–49.
Gastaldo R. A., Stevanoviç-Walls I., Ware W. N. 2004. Erect forests are evidence for coseismic base-level changes in Pennsylvanian cyclothems of the Black Warrior Basin, U. S. A. // AAPG Studies in Geology, 51, 219–38.
Gensel P. G., Edwards D., eds. 2001. Plants Invade the Land: Evolutionary and Environmental Perspectives. New York: Columbia Univ. Press, 512 p.
Gibling M. R., Davies N. S. 2012. Palaeozoic landscapes shaped by plant evolution // Nature Geoscience, 5, 99–105.
Gibling M. R. et al. 2013. Palaeozoic co-evolution of rivers and vegetation: A synthesis of current knowledge // Proceedings of Geologists’ Association, 125, 524–33.
Gurnell A. M., Bertoldi W., Corenblit D. 2012. Changing river channels: The role of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers // Earth-Science Reviews, 111, 129–41.
Habgood K. S., Hass H., Kerp H. 2004. Evidence for an early terrestrial food web: coprolites from the Early Devonian Rhynie chert // Transactions of the Royal Society of Edinburgh: Earth Sciences, 94 (for 2003), 371–89.
Haug J. T., Haug C., Garwood R. J. 2016. Evolution of insect wing and development – new details from Palaeozoic nymphs // Biological Reviews, 91, 53–69.
Hazen R. M. et al. 2013. Clay mineral evolution // American Mineralogist, 98, 2007–29.
Honegger R., Edwards D., Axe L., Strullu-Derrien C. 2017. Fertile Prototaxites taiti: a basal ascomycete with inoperculate, polysporous asci lacking crosiers // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 373, 20170146. DOI: 10.1098/rstb.2017.0146
Jones W. T., Hasiotis S. T. 2010. Lungfish burrows and earliest record of estivation by vertebrates, Upper Devonian Catskill Formation, Pennsylvania, USA // Geological Society of America Abstracts with Programs, 42, 253.
Kamenz C., Dunlop J. A., Scholtz G., Kerp H., Hass H. 2008. Microanatomy of Early Devonian book lungs // Biology Letters, 4, 212–5.
Krings M. et al. 2007. An alternative mode of early land plant colonization by putative endomycorrhizal fungi // New Phytologist, 174, 648–57.
Labandeira C. C. 2005. Invasion of the continents: cyanobacterial crusts to tree-inhabiting arthropods // TRENDS in Ecology and Evolution, 20, 253–62.
Labandeira C. C. 2006. The four phases of plant-arthropod associations in deep time // Geologica Acta, 4, 409–38.
Lenton T. M., Crouch M., Johnson M., Pires N., Dolan L. 2012. First plants cooled the Ordovician // Nature Geoscience, 5, 86–9.
MacIver M. A., Schmitz L., Mugan U., Murphey T. D., Mobley C. D. 2017. Massive increase in visual range preceded the origin of terrestrial vertebrates // Proceedings of the National Academy of Sciences of the USA. DOI: 10.1073/pnas.1615563114
Matsunaga K. K. S., Tomescu A. M. F. 2016. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte // Annals of Botany, 117, 585–98.
Melchin M. J., Mitchell C. E., Holmden C., Štorch P. 2013. Environmental changes in the Late Ordovician – early Silurian: Review and new insights from black shales and nitrogen isotopes // Geological Society of America Bulletin, 125, 1635–70.
Miller M. F., Labandeira C. C. 2002. Slow crawl across the salinity divide: Delayed colonization of freshwater ecosystems by invertebrates // GSA Today, 12, 4–10.
Mills B. J. W., Batterman S. A., Field K. J. 2017. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 373, 20160503. DOI: 10.1098/rstb.2016.0503
Montañez I. P. et al. 2016. Climate, pCO2 and terrestrial carbon cycle during late Palaeozoic glacial-interglacial cycles // Nature Geoscience, 9, 824–8.
Mukhopadhyay S., Choudhuri A., Samanta P., Sarkar S., Bose P. K. 2014. Were the hydraulic parameters of Precambrian rivers different? // Journal of Asian Earth Sciences, 91, 289–97.
Ortega-Hernández J., Legg D. A., Tremewan J., Braddy S. J. 2010. Euthycarcinoids // Geology Today, 26, 195–8.
Reisz R. R., Fröbisch J. 2014. The oldest caseid synapsid from the Late Pennsylvanian of Kansas, and the evolution of herbivory in terrestrial vertebrates // PLoS ONE, 9 (4), e94518. DOI: 10.1371/journal.pone.0094518
Retallack G. J., Landing E. 2014. Affinities and architecture of Devonian trunks of Prototaxites loganii // Mycologia, 106, 1143–58.
Sahney S., Benton M. J., Falcon-Lang H. J. 2010. Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica // Geology, 38, 1079–82.
Schachat S. R. et al. 2014. Plant-insect interactions from Early Permian (Kungurian) Colwell Creek Pond, north-central Texas: The early spread of herbivory in riparian environments // International Journal of Plant Sciences, 175, 855–90.
Schneider S. H., Boston P. J., eds. 1993. Scientists on Gaia. Cambridge, Massachusetts; London: The MIT Press. 433 p.
Scott A. C., Jones T. P. 1994. The nature and influence of fire in Carboniferous ecosystems // Palaeogeography, Palaeoclimatology, Palaeoecology, 106, 91–112.
Steemans P., Lepot K., Marshall C. P., Le Hérissé A., Javaux E. J. 2010. FTIR characterisation of the chemical composition of Silurian cryptospores from Gotland, Sweden // Review of Palaeobotany and Palynology, 162, 577–90.
Stein W. E., Mannolini F., VanAller Hernick L., Landing E., Berry C. M. 2007. Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa // Nature, 446, 904–7.
Stevens C. E., Hume I. D. 1998. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients // Physiological Reviews, 78, 393–427.
Taylor T. N., Taylor E. L., Krings M. 2009. Paleobotany: The Biology and Evolution of Fossil Plants. 2nd ed. New York: Academic Press, 1230 p.
Taylor T. N., Krings M., Taylor E. L. 2015. Fossil Fungi. New York: Academic Press, 382 p.
Trotter J. A., Williams I. S., Barnes C. R., Lécuyer C., Nicoll R. S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry // Science, 321, 550–4.
Ward P., Labandeira C., Laurin M., Berner R. A. 2006. Confirmation of Romer’s Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization // Proceedings of the National Academy of Sciences of the USA, 103, 16818–22.
Wang J., Pfefferkorn H. W., Zhang Y., Feng Z. 2012. Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia // Proceedings of the National Academy of Sciences of the USA, 109, 4927–32.
Weng J.-K., Chapple C. 2010. The origin and the evolution of lignin biosynthesis // New Phytologist, 187, 273–85.
Wilson H. M., Anderson L. I. 2004. Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland // Journal of Paleontology, 78, 169–84.
Wilson J. P., Knoll A. H. 2010. A physiological explicit morphospace for tracheid-based water transport in modern and extinct seed plants // Paleobiology, 36, 335–55.
Wilson J. P. et al. 2017. Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate // New Phytologist. DOI: 10.1111/nph.14700
Zambell C. B., Adams J. M., Gorring M. L., Schwartzman D. W. 2012. Effect of lichen colonization on chemical weathering of hornblende granite as estimated by aqueous flux // Chemical Geology, 291, 166–74.
Часть V
Длусский Г. М. Муравьи (Hymenoptera: Formicidae) из бирманского янтаря // Палеонтологический журнал. 1996. № 3. 83–9.
Жерихин В. В. Избранные труды по палеоэкологии и филоценогенетике. – М.: Т-во научных изданий КМК, 2003.
Пономаренко А. Г. Палеобиология ангиоспермизации // Палеонтологический журнал. 1998. № 4. С. 3–10.
Расницын А. П. Избранные труды по эволюционной биологии. – М.: Т-во научных изданий КМК, 2005.
Ронов А. Б. Стратисфера, или Осадочная оболочка Земли (количественное исследование). – М.: Наука, 1993.
Симпсон Дж. Великолепная изоляция. История млекопитающих Южной Америки. – М.: Мир, 1983.
Татаринов Л. П. Морфологическая эволюция териодонтов и общие вопросы филогенетики. – М.: Наука, 1976.
Ahrens D., Schwarzer J., Vogler A. P. 2014. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals // Proceedings of the Royal Society of London B, 281 (1791), 20141470. DOI: 10.1098/rspb.2014.1470
Allen V., Bates K. T., Li Z., Hutchinson J. R. 2013. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs // Nature, 497, 104–7.
Allmon W. D., Martin R. E. 2014. Seafood through time revisited: the Phanerozoic increase in marine trophic resources and its macroevolutionary consequences // Paleobiology, 40, 256–87.
Amick D. S. 2017. Evolving views on the Pleistocene colonization of North America // Quaternary International, 431 (Pt B), 125–51.
Bader W. et al. 2017. The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005 // Atmospheric Chemistry and Physics, 17, 2255–77.
Bains S., Norris R. D., Corfield R. M., Faul K. L. 2000. Termination of global warmth at the Palaeocene/Eocene boundary through productivity feedback // Nature, 407, 171–4.
Bambach R. K., Knoll A. N., Sepkoski J. J., Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm // Proceedings of the National Academy of Sciences of the USA, 99, 6854–9.
Bannikov A. F. 2014. The systematic composition of the Eocene actinopterygian fish fauna from Monte Bolca, northern Italy, as known to date // Studi e Ricerche sui Giacimenti Terziari di Bolca, 12, 23–34.
Bargo M. S., De Iuliis G., Vizcaíno S. F. 2006. Hypsodonty in Pleistocene ground sloths // Acta Palaeontologica Polonica, 51, 53–61.
Barnosky A. D. et al. 2016. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America // Proceedings of the National Academy of Sciences of the USA, 113, 856–61.
Bates K. T., Falkingham P. L. 2012. Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics // Biology Letters, 8, 660–4.
Beerling D. J., Osborne C. P. 2006. The origins of the savanna biome // Global Change Biology, 12, 2023–31.
Beerling D. J., Royer D. L. 2011. Convergent Cenozoic CO2 history // Nature Geoscience, 4, 418–20.
Behrensmeyer A. K. et al., eds. 1992. Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals. Chicago: Univ. Chicago Press, 588 p.
Bellwood D. R., Goatley C. H. R., Bellwood O. 2017. The evolution of fishes and corals on reefs: form, function and interdependence // Biological Reviews, 92, 878–901.
Berendse F., Scheffer M. 2009. The angiosperm radiation revisited, an ecological explanation for Darwin’s ‘abominable mystery’ // Ecology Letters, 12, 865–72.
Beuck L., Wisshak M., Munnecke A., Freiwald A. 2008. A giant boring in Silurian stromatoporoid analysed by computer tomography // Acta Palaeontologica Polonica, 53, 149–60.
Bininda-Emonds O. R. P. et al. 2007. The delayed rise of present-day mammals // Nature, 446, 507–12.
Black B., Archer M., Hand S. J., Gothelp H. 2012. The rise of Australian marsupials: A synopsis of biostratigraphic, phylogenetic and palaeobiogeographic understanding // Talent J. A., ed. Earth and Life. Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time. Dordrecht: Springer, p. 983–1078.
Bocherens H. et al. 2011. Isotopic evidence for dietary ecology of cave lion (Panthera spelaea) in North-Western Europe: Prey choice, competition and implications for extinction // Quaternary International, 245, 249–61.
Botha-Brink J. 2017. Burrowing in Lystrosaurus: Preadaptation to a postextinction environment? // Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.201.1365080
Bouchenak-Khelladi Y. et al. 2009. The origins and diversification of C4 grasses and savanna-adapted ungulates // Global Change Biology, 15, 2397–417.
Boyce C. K., Lee J. E. 2010. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity // Proceedings of the Royal Society of London B, 277, 3437–43.
Brandt D. S., Elias R. J. 1989. Temporal variations in tempestite thickness may be a geologic record of atmospheric CO2 // Geology, 17, 951–2.
Brodribb T. J., Field T. S. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification // Ecology Letters, 13, 175–83.
Brown C. M. et al. 2017. An exceptionally preserved three-dimensional armored dinosaur reveals insight into coloration and Cretaceous predator-prey dynamics // Current Biology, 27, 1–8. DOI: 10.1016/j.cub.2017.06.071
Burgess S. D., Bowring S. A. 2015. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction // Science Advances, 1, e1500470. DOI: 10.1126/sciadv.1500470
Burness G. P., Diamond J., Flannery T. 2001. Dinosaurs, dragons, and dwarfs: The evolution of maximal body size // Proceedings of the National Academy of Sciences of the USA, 98, 14518–23.
Carter L. B., Dasgupta R. 2013. Hydrous basalt-limestone interaction at crustal conditions: Implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs // Earth and Planetary Science Letters, 427, 202–14.
Chernova O. F., Kirillova I. V., Boeskorov G. G., Shidlovskiy F. K., Kabilov M. R. 2015. Architectonics of the hairs of the woolly mammoth and woolly rhino // Proceedings of the Zoological Institute RAS, 319, 441–60.
Chu D. et al. 2015. Early Triassic wrinkle structures on land: stressed environments and oases for life // Scientific Reports, 5, 10109. DOI: 10.1038/srep10109
Clapham M. E., Payne J. L. 2011. Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian // Geology, 39, 1059–62.
Clarkson M. O. et al. 2015. Ocean acidification and the Permian-Triassic mass extinction // Science, 348, 229–32.
Clarkson M. O. et al. 2016. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery // Nature Communications, 7, 12236. DOI: 10.1038/ncomms.12236
Codron D., Carbone C., Müller D. W. H., Clauss M. 2012. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates // Biology Letters, 8, 620–3.
Cui Y., Kump L. R. 2015. Global warming and the end-Permian extinction event: Proxy and modelling perspectives // Earth-Science Reviews, 149, 5–22.
Danise S., Higgs N. D. 2015. Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls // Biology Letters, 11 (4), 20150072. DOI: 10.1098/rsbl.2015.0072
de Boer H. J., Eppinga M. B., Wassen M. J., Dekker S. C. 2012. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution // Nature Communications, 3, 1221. DOI: 10.1038/ncomms2217
Dlussky G. M., Wappler T., Wedmann S. 2009. Fossil ants of the genus Gesomyrmex Mayr (Hymenoptera, Formicidae) from the Eocene of Europe and remarks on the evolution of arboreal communities // Zootaxa, 2031, 1–20.
Doughty C. E. et al. 2016. Global nutrient transport in a world of giants // Proceedings of the National Academy of Sciences of the USA, 113, 868–73.
Doyle J. A. 2012. Molecular and fossil evidence on the origin of angiosperms // Annual Review of Earth and Planetary Sciences, 40, 301–26.
Eagle R. A. et al. 2011. Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals // Science, 333, 443–5.
Edwards E. J. et al. 2010. The origins of C4 grasslands: Integrating evolutionary and ecosystem science // Science, 328, 587–91.
Ellison A. M., Farnsworth E. J., Merkt R. E. 1999. Origins of mangrove ecosystems and the mangrove biodiversity anomaly // Global Ecology and Biogeography, 8, 95–115.
Erickson G. M. et al. 2015. Wear biomechanics in the slicing dentition of the giant horned dinosaur Triceratops // Science Advances, 1, e1500055. DOI: 10.1126/sciadv.1500055
Eriksson O. 2016. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores // Biological Reviews, 91, 168–86.
Falkowski P. G. et al. 2004. The evolution of modern eukaryotic plankton // Science, 305, 354–60.
Fastovski D. E., Weishampel D. B. 2009. Dinosaurs: A Concise Natural History. Cambridge: Cambridge Univ. Press, 379 p.
Feild T. S. et al. 2004. Dark and disturbed: a new image of early angiosperm ecology // Paleobiology, 30, 82–107.
Frey E., Tischlinger H. 2012. The Late Jurassic pterosaur Rhamphorhynchus, a frequent victim of the ganoid fish Aspidorhynchus? // PLoS ONE, 7 (3), e31945. DOI: 10.1371/journal.pone.0031945
Friis E. M., Pedersen K. R., Crane P. R. 2010. Diversity and obscurity: fossil flowers and the early history of angiosperms // Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365, 369–82.
Gattuso J.-P., Allemand D., Frankignoulle M. 1999. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review of interactions and control by carbonate chemistry // American Zoologist, 39, 160–83.
Gingerich P. D., Haq M.-u., Zalmout I. S., Khan I. H., Malkani M. S. 2001. Origin of whales from early artiodactyls: Hands and feet of Eocene Protocetidae from Pakistan // Science, 293, 2239–42.
Gnanadesikan A., Anderson W. G. 2009. Ocean water clarity and the ocean general circulation in a coupled climate model // Journal of Physical Oceanography, 39, 314–32.
Goswami A. et al. 2011. A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India // Proceedings of the National Academy of Sciences of the USA, 108, 16333–8.
Guil-Guerrero J. L. et al. 2014. The fat from frozen mammals reveals sources of essential fatty acids suitable Palaeolithic and Neolithic humans // PLoS ONE, 9 (1), e84480. DOI: 10.1371/journal.pone.0084480
Guthrie R. D. 1990. Frozen Fauna of the Mammoth Steppe: The Story of Blue Babe. Chicago: Univ. Chicago Press, 323 p.
Hallock P. 1987. Fluctuations in the trophic resource continuum: A factor of global diversity cycles? // Paleoceanography, 2, 457–71.
Hards V. L. 2005. Volcanic contributions to the global carbon cycle // British Geological Survey Occasional Publication, 10, 1–26.
Heim N. A., Knope M. L., Schaal E. K., Wang S. C., Payne J. L. 2015. Cope’s rule in the evolution of marine animals // Science, 347, 867–70.
Hendry K. R. et al. 2018. Competition between silicifiers and non-silicifiers in the Past and Present ocean and its evolutionary impacts // Frontiers in Marine Science, 5, 22. DOI: 10.3389/fmars.2018.00022
Hill R. V., D’Emic M. D., Bever G. S., Norell M. A. 2015. A complex hyobranchial apparatus in a Cretaceous dinosaur and the antiquity of avian paraglossalia // Zoological Journal of the Linnean Society. DOI: 10.1111/zoj.12293
Huang S. et al. 2017. Mammal body size evolution in North America and Europe over 20 Myr: similar trends generated by different processes // Proceedings of the Royal Society of London B, 284. DOI: 10.1098/rspb.2016.2361
Hummel J. et al. 2008. In vitro digestibility of fern and gymnosperm foliage: implications for sauropod feeding ecology and diet selection // Proceedings of the Royal Society of London B, 275, 1015–21.
Huttenlocker A. K., Farmer C. G. 2017. Bone microvascular tracks red blood cell size diminution in Triassic mammal and dinosaur forerunners // Current Biology, 27, 48–54.
Jenkyns H. C. 2010. Geochemistry of oceanic anoxic events // Geochemistry, Geophysics, Geosystems, 11, Q03004. DOI: 10.1029/2009GC002788
Johnson C. N. 2009. Ecological consequences of Late Quaternary extinctions of megafauna // Proceedings of the Royal Society of London B, 276, 2509–19.
Johnson C. N. et al. 2016. What caused extinction of the Pleistocene megafauna of Sahul? // Proceedings of the Royal Society of London B, 283 (1824), 20152399. DOI: 10.1098/rspb.2015.2399
Kahlke R.-D. 2014. The origin of Eurasian Mammoth Faunas (Mammuthus-Coelodonta Faunal Complex) // Quaternary Science Reviews, 96, 32–49.
Keller G. et al. 2013. Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous-Tertiary boundary hiatus // Geological Magazine, 150, 885–907.
Kidwell S. M., Brenchley P. J. 1994. Patterns in bioclastic accumulations through the Phanerozoic: Changes in input or destruction // Geology, 22, 1139–43.
Kirillova I. V., Shidlovskiy F. K. 2010. Estimation of individual age and season of death in woolly rhinoceros, Coelodonta antiquitatis (Blumenbach, 1799), from Sakha-Yakutia, Russia // Quaternary Science Reviews, 29, 3106–14.
Klompmaker A. A., Kowalewski M., Huntley J. W., Finnegan S. 2017. Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems // Science, 356, 1178–80.
Kosnik M. A. et al. 2011. Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers // Paleobiology, 37, 303–31.
Kotrc B., Knoll A. H. 2015. Morphospaces and databases: Diatom diversification through time / Hamm C., ed. Evolution of Lightweight Structures: Analyses and Technical Applications. Dordrecht: Springer, p. 17–37.
Krassilov V. A., Rasnitsyn A. P., Afonin S. A. 2007. Pollen eaters and pollen morphology: co-evolution through the Permian and Mesozoic // African Invertebrates, 48, 3–11.
Kurzawski R. M. et al. 2016. Earthquake nucleation in weak subducted carbonates // Nature Geoscience, 9, 717–22.
Labandeira C. C., Currano E. D. 2013. The fossil record of plant-insect dynamics // Annual Review of Earth and Planetary Sciences, 41, 287–311.
Lehmann T., Schaal F. K. 2012. Messel and the Terrestrial Eocene – Proceedings of the 22nd Senckenberg Conference // Palaeobiodiversity and Palaeoenvironments, 92, 397–402.
Lindgren J., Caldwell M. W., Konishi T., Chiappe L. M. 2010. Convergent evolution in aquatic tetrapods: Insights from an exceptional fossil mosasaur // PLoS ONE, 5 (8), e11998. DOI: 10.1371/journal.pone.0011998
Lloyd G. M. et al. 2008. Dinosaurs and the Cretaceous terrestrial revolution // Proceedings of the Royal Society of London B, 275, 2483–90.
Luo Z.-X. 2007. Transformation and diversification in early mammal evolution // Nature, 450, 1011–9.
MacLaren J. A., Anderson P. S. L., Barrett P. M., Rayfield E. J. 2017. Herbivorous dinosaur disparity and its relationship to extrinsic evolutionary drivers // Paleobiology, 43, 15–33.
Madin J. S. et al. 2006. Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates // Science, 312, 897–900.
McAnena A. et al. 2013. Atlantic cooling associated with a marine biotic crisis during the mid-Cretaceous period // Nature Geoscience, 6, 558–61.
McGowan A. J., Smith A. B., eds. 2011. Comparing the Geological and Fossil Records: Implications for Biodiversity Studies. London: Geol. Soc., 310 p. (Geological Society of London Special Publications, 358).
Misra S., Froelich P. N. 2012. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering // Science, 335, 818–23.
Mutterlose J., Bottini C. 2013. Early Cretaceous chalks from the North Sea giving evidence for global change // Nature Communications, 4, 1686. DOI: 10.1038/ncomms2698
Nespolo R. F. et al. 2011. Using new tools to solve an old problem: the evolution of endothermy in vertebrates // Trends in Ecology and Evolution, 26, 414–23.
Noè L. F., Taylor M. A., Gómez-Pérez M. 2017. An integrated approach to understanding the role of the long neck in plesiosaurs // Acta Palaeontologica Polonica, 62, 137–62.
Peris D. et al. 2017. False blister beetles and the expansion of gymnosperm-insect pollination modes before angiosperm dominance // Current Biology, 27, 1–8. DOI: 10.1016/j.cub.2017.02.009
Prevosti F. J., Vizcaíno S. F. 2006. Paleoecology of the large carnivore guild from the late Pleistocene of Argentina // Acta Palaeontologica Polonica, 51, 407–22.
Quirk J. et al. 2012. Evolution of trees and mycorrhizal fungi intensifies silicate weathering // Biology Letters, 8, 1006–11.
Rasnitsyn A. P., Quicke D. L. J., eds. 2002. History of Insects. Dordrecht: Kluwer Academic Publishers, 517 p.
Ratti S., Knoll A. H., Giordano M. 2013. Grazers and phytoplankton growth in the ocean: an experimental and evolutionary perspective // PLoS ONE, 8 (10), e77349. DOI: 10.1371/journal.pone.0077349
Rey K. et al. 2017. Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades // eLife Sciences, 6, e28589. DOI: 10.7554/eLife.28589
Sander P. M. 2013. An evolutionary cascade model for sauropod dinosaur gigantism – Overview, update and tests // PLoS ONE, 8 (10), e78573. DOI: 10.1371/journal.pone.0078573
Schaal E. K., Clapham M. E., Rego B. L., Wang S. C., Payne J. L. 2016. Comparative size evolution of marine clades from the Late Permian through Middle Triassic // Paleobiology, 42, 127–42.
Sellés A. G., Vila B., Galobart À. 2017. Evidence of reproductive stress in titanosaurian sauropods triggered by an increase in ecological competition // Scientific Reports, 7, 13827. DOI: 10.1038/s41598-017-14255-6
Semprebon G. M. et al. 2016. Dietary reconstruction of pygmy mammoths from Santa Rosa Island of California // Quaternary International, 406, 123–36.
Shcherbakov D. E. 2008. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis // Paleontological Journal, 42 (1), 15–32.
Shattuck M. R., Williams S. A. 2016. Arboreality has allowed for the evolution of increased longevity of mammals // Proceedings of the National Academy of Sciences of the USA, 107, 4635–9.
Smith F. A., Elliott S. M., Lyons S. K. 2010. Methane emissions from extinct megafauna // Nature Geoscience, 3, 374–5.
Stuart A. J. 2015. Late Quaternary megafaunal extinctions on the continents: a short review // Geological Journal, 50, 338–63.
Swan H. B., Jones G. B., Deschaseaux E. 2012. Dimethylsulfide, climate and coral reef ecosystems // Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July, 2012, 5 pp.
Tappan H. 1986. Phytoplankton: Below the salt at the global table // Journal of Paleontology, 60, 545–54.
Thierstein H. R., Young J. R., eds. 2004. Coccolithophores: From Molecular Processes to Global Impact. Berlin; Heidelberg: Springer, 565 p.
Tipple B. J., Pagani M. 2007. The early origins of terrestrial C4 photosynthesis // Annual Review of Earth and Planetary Sciences, 35, 435–61.
Therrien F., Henderson D. M. 2007. My theropod is bigger than yours… Or not: Estimating body size from skull length in theropods // Journal of Vertebrate Paleontology, 27, 108–15.
Uchman A., Wetzel A. 2011. Deep-sea ichnology: The relationship between depositional environment and endobenthic organisms // Hüneke H., Mulder T., eds. Deep-Sea Sediments. Amsterdam: Elsevir. 517–56 (Developments in Sedimentology, 63).
Vermeij G. J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton, New Jersey: Princeton Univ. Press, 527 p.
Visscher H. et al. 2004. Environmental mutagenesis during the end-Permian ecological crisis // Proceedings of the National Academy of Sciences of the USA, 101, 12952–6.
Vivo de M., Carmignotto A. P. 2004. Holocene vegetation change and the mammal faunas of South America and Africa // Journal of Biogeography, 31, 943–57.
Vizcaíno S. F., Bargo M. S. 2014. Loss of ancient diversity of xenarthrans and the value of protecting extant armadillos, sloths and anteaters // Edentata, 15, 27–38.
Wang X. et al. 2017. Egg accumulation with 3D embryos provides insight into the life history of pterosaurs // Science, 358, 1197–1201.
Wang Y. et al. 2012. Jurassic mimicry between a hangingfly and a ginkgo from China // Proceedings of the National Academy of Sciences of the USA, 109, 20514–9.
Waters C. N., Zalasiewicz J. A., Williams M., Ellis M. A., Snelling A. M., eds. 2014. A Stratigraphical Basis for the Anthropocene. Bath: Geol. Soc., 321 p. (Geological Society of London Special Publication, 395).
Wilkinson D. M., Nisbet E. G., Ruxton G. D. 2012. Could methane produced by sauropod dinosaurs have helped to drive Mesozoic climate warmth? // Current Biology, 22, R292–3.
Wood R. A. 1999. Reef Evolution. Oxford: Oxford Univ. Press, 414 p.
Wroe S. et al. 2003. An alternative method for predicting body mass: the case of the Pleistocene marsupial lion // Paleobiology, 29, 403–11.
Xu X. et al. 2014. An integrative approach to understanding bird origins // Science, 346 (6215), 1253293. DOI: 10.1126/science.1253293
Yuan Y. et al. 2014. Role of β/δ101 Gln in regulating the effect of temperature and allosteric effectors on oxygen affinity in woolly mammoth hemoglobin // Biochemistry, 52, 8888–97.

 

Назад: Путь к финалу
На главную: Предисловие