Ослабление по плану
Легкость, с какой может быть достигнута в результате последовательного пассажа в модифицированной среде аттенуация РНК-содержащих вирусов, подчеркивает тот факт, что, несмотря на склонный к ошибкам процесс репликации, эти вирусы имеют геномные последовательности, которые превосходно настроены на приспособленность и совершенствуются под действием давления очищающего отбора. Оптимизированные и приспособленные их генотипы балансируют на острие ножа. Фенотип вируса, очевидно, зависит от аминокислотных последовательностей его белков; поэтому на эти последовательности сильно влияют последовательности нуклеотидов в РНК. Некоторые последовательности РНК функционируют в качестве контрольных элементов сами по себе или свертываются в сложные структуры, характеризующиеся своей особой функциональностью. Для того чтобы понять и оценить этот пункт нам стоит лишь исследовать природу ослабляющих мутаций в вирусе полиомиелита Сэбин-1. Одна из наиболее важных мутаций, ведущих к ослаблению вируса, располагается на 5’-конце некодирующей области генома и приводит к дестабилизации комплементарного спаривания оснований, которое важно для поддержания вторичной структуры генома (Minor et al., 1993). Другие ограничения, накладываемые на геномные последовательности, также очевидны; они были обнаружены учеными Университета Стони Брука, а также работниками Центров по контролю и профилактике заболеваний (Burns et al., 2006; Coleman et al., 2008; Mueller, Papamichail, Coleman, 2006). Это ограничение заключается в кодонной неслучайности, которая поддерживается давлением отбора на вирусные геномы. Наш собственный геном и геномы различных бактерий проявляют кодонную неслучайность так же, как и геномы вирусные. Заметив, что 300 аминокислотных последовательностей в белках можно закодировать 10151 комбинациями 300 кодонов, выбранных в вырожденном генетическом коде, зададим себе вопрос: действительно ли данная работающая последовательность является оптимальной для приспособленности (Coleman et al., 2008)? На самом деле является; дело не только в том, что кодируют вирусные гены, но и в том, как они это кодируют, и именно в этом кроется оптимальная приспособленность генома. Ученые прибегли к компьютерным инструментам, которые позволили перекодировать капсидный белок полиовируса P1, изменив кодонную неслучайность, но сохранив способность цепи РНК сложиться в такую же вторичную структуру, что и родительский дикий тип.
Результаты проложили путь к исследованию живых ослабленных вакцин – к созданию синтетических ослабленных вирусов (synthetic attenuated virus engineering, SAVE). Был создан вирус с 631 синонимической мутацией в кодирующей последовательности P1, причем закономерным было использование кодонов, которые редко используются в клетках человека. В результате получился резко ослабленный вирус, который не вызывал заболевания у подопытных животных и, подобно живому ослабленному полиовирусу, созданному Сэбином, стал высокоэффективной вакциной. Однако, в отличие от штаммов Сэбина, множественность генетических изменений, определяющих ослабление, соответствует фенотипу, более устойчивому к реверсии in vivo. Эта технология чрезвычайно полезна для разработки безопасных и устойчивых ослабленных вирусов, которые вызывают иммунный ответ такой же силы, что и естественный инфекционный возбудитель. В настоящее время есть много примеров искусственного создания синтетических ослабленных вакцин; самое примечательное, что этот метод был применен для создания живой ослабленной вакцины против гриппа, то есть вируса, который мы, в отличие от вирусов оспы и полиомиелита, не сможем искоренить и для которого вакцинация остается единственным способом держать болезнь под контролем.