Сферическая и проективная геометрия
Первое значительное отступление от правил евклидовой геометрии зародилось в недрах самого что ни на есть практического ее применения – навигации. На коротких расстояниях Земля может считаться практически плоской, и ее географические особенности можно точно перенести на плоскость. Но по мере того, как корабли совершали всё более длительные путешествия, учитывать истинную форму нашей планеты стало жизненно необходимо. Некоторые древние цивилизации знали, что Земля круглая. Доказательств было немало: начиная с того, как исчезает на горизонте уплывающий корабль, и кончая тенью планеты, падающей на Луну во время затмений. Это наталкивало древних ученых на мысль, что Земля – идеальный шар.
На самом деле этот шар слегка сплюснут: на экваторе его диаметр равен 12 756 км, а между полюсов 12 714 км. Разница относительно невелика – 300-я доля. В те времена, когда для навигаторов не считалась ошибкой промашка в несколько сотен километров, их вполне устраивала Земля как идеальный шар. Но тогда упор делался скорее на сферическую тригонометрию, а не геометрию – на саму суть навигационных расчетов, а не логический анализ сферы как особого вида пространства. Поскольку сфера относилась к трехмерному евклидову пространству, никто и не предполагал, что сферическая геометрия может чем-то отличаться от евклидовой. Все неточности списывали на кривизну Земли. Сама же геометрия пространства оставалась полностью евклидовой.
Значительным шагом за пределы евклидовой геометрии стала проективная геометрия, открытая в начале XVII в. На нее первыми обратили внимание не ученые, а художники: вспомните теоретические и практические исследования перспективы мастеров итальянского Возрождения. Их целью было сделать свои картины более реалистичными, а привело это к новому образу мышления в геометрии. И снова эти исследования могли быть восприняты как инновации в рамках классической евклидовой геометрии. Ведь речь шла не о самом пространстве, а о том, как мы видим его.
Открытие, что Евклид может быть не единственным авторитетом, что могут существовать логически обоснованные типы геометрии, опровергающие многие из его теорем, пришло с возрождением интереса к логическим основаниям геометрии. Споры захватили ученых в середине XVIII в. и продолжались до середины XIX в. Больше всего вопросов вызвал так называемый пятый постулат Евклида, который весьма туманно утверждал существование параллельных линий. Попытки вывести его из остальных аксиом Евклида привели к открытию, что такой вывод невозможен и есть и другие виды геометрии, помимо евклидовой. Эта неевклидова геометрия давно стала незаменимым инструментом для исследований в математике и математической физике.