Книга: Укрощение бесконечности. История математики от первых чисел до теории хаоса
Назад: Непрерывные функции
Дальше: Степенные ряды

Пределы

Идеи Больцано дали толчок дальнейшему усовершенствованию. Он сделал возможным определение предела бесконечной последовательности чисел и, следовательно, ряда, который является суммой бесконечной последовательности. Так, его формализм подразумевает:
1 + 1/2 + 1/4 + 1/8 + 1/16 + …
и т. д. до бесконечности. Это осмысленная сумма, и ее величина точно равна 2. Не чуть-чуть меньше, не бесконечно малой величине меньше 2, а ровно 2. Чтобы понять, как это работает, предположим, что у нас есть последовательность чисел:
a0, a1, a2, a3, …
и т. д. до бесконечности. Мы можем сказать, что an стремится к пределу a по мере того, как n стремится к бесконечности, если для любого числа ε > 0 существует такое число N, что разница между an и а меньше, чем ε, для любого n > N. (Символ ε, один из традиционно используемых математиками, – греческая буква эпсилон.) В этом определении все числа конечные – никаких бесконечно малых или бесконечно больших. В дополнение к бесконечному ряду выше взглянем на его конечные суммы:
a0 = 1,
a1 = 1 + 1/2 = 3/2,
a2 = 1 + 1/2 + 1/4 = 7/4,
a3 = 1 + 1/2 + 1/4 + 1/8 = 15/8
и т. д. Разница между an и 2 равна 1/2n. Чтобы сделать ее меньше ε, мы берем n > N = log2 (1/ε).
Ряд, имеющий конечный предел, называют сходящимся. Конечная сумма определяется как предел последовательности конечных сумм, полученных добавлением всё новых ее элементов. Если такой предел существует, ряд сходящийся. И производные, и интегралы – лишь разновидности пределов. Они существуют – иными словами, обретают математический смысл – при условии, что их пределы сходятся. Пределы, как отмечал Ньютон, – некая величина, которая позволяет определить, как некое другое число приближается к бесконечности или 0. Но при этом число не может достичь бесконечности или 0.
Сегодня исчисление в целом опирается на непоколебимый фундамент. Ранее его главным недостатком было то, что, прежде чем прибегнуть к поиску предела, никто не интересовался, есть ли вообще сходимость. Лучшим способом сделать это было бы доказательство еще нескольких более общих теорем о том, какие виды функций непрерывны, или дифференцируемы, или интегрируемы, и какие последовательности и ряды сходятся. Именно этим и занялись математики, и именно поэтому мы можем уже не тревожиться из-за нестыковок, отмеченным епископом Беркли. Поэтому мы больше не противимся использованию рядов Фурье: теперь можно точно определить, когда они сходятся, а когда нет, и уж, во всяком случае, четко понять, в каком смысле они сходятся. Существует достаточно возможностей выбрать тот ряд Фурье, который вам нужен.
Назад: Непрерывные функции
Дальше: Степенные ряды