Простые числа
Любой, кому доводилось перемножать целые числа, замечал их фундаментальные отличия.
Многие числа можно разделить на меньшие части, из которых искомое получается путем их перемножения. Например, 10 можно получить умножением 2 на 5, а 12 равно 3 × 4. Но некоторые числа так разделить невозможно. Мы не можем выразить 11 как произведение двух меньших целых чисел, то же относится к 2, 3, 5, 7 и многим другим.
Составные числа – те, которые можно выразить как произведение двух меньших. Простые числа – те, которые нельзя так выразить. Согласно этому определению, 1 должно считаться простым числом, но в силу важных причин его решено выделить в отдельный класс и обозначать как единицу. Итак, первые простые числа выглядят так:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41
По этому списку видно, что для простых чисел нет очевидного шаблона (за исключением того, что все, кроме первого, нечетные). Кажется, они появляются беспорядочно, и нет способа предсказать, каким будет следующее в списке. Но даже тогда несомненно, что это число всё же можно определить – одно за другим проверяя все последующие, пока снова не найдете простое.
Несмотря или, скорее, благодаря своему беспорядочному распределению они жизненно важны в математике. Они являются основными строительными блоками для всех прочих чисел, в том смысле, что большие числа получаются умножением меньших.
Химия утверждает, что любая молекула, какой бы сложной она ни была, состоит из атомов – неделимых частиц материи. А математика говорит нам, что любое число, каким бы большим оно ни было, состоит из простых – неделимых. Простые числа – это атомы теории чисел.
Это свойство простых чисел очень полезно, потому что в математике многие вопросы могут быть решены для всех целых чисел, если их решить для простых чисел, а простые числа имеют такие особые свойства, что иногда облегчают процесс. Эта дуальность простых чисел – простота, но непредсказуемость – всегда была предметом любопытства ученых.