ЦИФРЫ ДРЕВНИХ МАЙЯ
Замечательная система счисления, основанная вместо 10 на 20 символах, была изобретена народом майя, населявшим Южную Америку около 1000 г. н. э. В двадцатеричной системе символы, эквивалентные нашим цифрам 347, будут обозначать следующее:3 × 400 + 4 × 20 + 7 × 1(поскольку 20 × 20 = 400), что равно 1287 в нашей системе обозначения. Настоящие символы майя показаны сверху.
Скорее всего, переход ранних цивилизаций к десятичной системе обусловлен тем, что у человека на руках десять пальцев. Тогда логично предположить, что 20 цифр майя соответствуют 20 пальцам на руках и ногах.
ЧТО АРИФМЕТИКА ДАЕТ НАМ
Мы постоянно пользуемся арифметикой и в быту, и в торговле, и в науке. До появления электронных калькуляторов и компьютеров мы вдобавок делали подсчеты вручную: при помощи ручки и бумаги, или таких простых приспособлений, как счеты, или арифметических таблиц готовых расчетов (например, таблиц сложения и умножения). Сегодня большинство арифметических действий происходит вне поля зрения, в электронном виде: например, в супермаркете вам выдадут чек с суммой покупки и сдачу, а банк сообщит об изменении суммы на счете – без специального обращения к специалистам. Общее «количество» арифметических действий, происходящих в повседневной жизни каждого из нас, весьма впечатляет.Арифметические подсчеты в компьютере происходят не в десятичном формате. Используется двоичная система. Это значит, что вместо наших единиц, десятков, сотен, тысяч и т. д. компьютеры используют 1, 2, 4, 8, 16, 32, 64, 128, 256 и т. д. – степени двойки, где каждое число вдвое больше предыдущего (именно поэтому карта памяти для вашей цифровой камеры имеет нелепую на первый взгляд емкость в 256 мегабайт). Для компьютера число 100 будет разбито по степеням двойки как 64 + 32 + 4 и сохранено в виде 1100100.