Книга: Укрощение бесконечности. История математики от первых чисел до теории хаоса
Назад: Абстрактные группы
Дальше: Кольца, поля и алгебры

Теория чисел

Еще одним источником новейших алгебраических идей стала теория чисел. Начало ей положил Гаусс, представив ученым то, что сейчас называется гауссовыми целыми числами. Это были комплексные числа a + bi, где a и b целые числа. Сумма и произведение этих чисел имеют такой же вид. Гаусс открыл, что понятие простых чисел обобщается на гауссовы целые числа. Они простые, если не могут быть выражены как произведение других гауссовых целых чисел, за исключением тривиальных случаев. Разложение гауссовых целых чисел на простые множители уникально. Некоторые из простых чисел, например 3 и 7, остаются простыми, даже если выражены через гауссовы простые числа, другие – нет: например, 5 = (2 + i)(2 – i). Этот факт тесно связан с теоремой Ферма о простых числах и их представлении как суммы двух квадратов, причем гауссовы простые числа иллюстрируют эту теорему и родственные ей.
Если мы разделим одно гауссово целое число на другое, полученный результат окажется не обязательно гауссовым целым числом, но, по крайней мере, близким к нему: он будет иметь вид a + bi, где a и b – рациональные числа. Это и есть гауссовы числа. Используя более общий подход, ученые, занимающиеся теорией чисел, открыли, что происходит нечто одинаковое, если мы возьмем любой многочлен p(x) с целыми коэффициентами и затем рассмотрим все линейные комбинации a1x1 + … + anxn от его корней x1, …, xn. Положим, что a1, …, an – рациональные числа, тогда мы получаем систему комплексных чисел, которая замкнута относительно сложения, вычитания, умножения и деления; это значит, что, когда эти действия применяются к такому числу, в результате получается число подобного же рода. Такая система представляет собой поле алгебраических чисел. Если же вместо этого мы потребуем, чтобы a1, …, an были целыми, то система станет замкнутой относительно сложения, вычитания и умножения, но не деления: тогда мы получим кольцо алгебраических чисел.
Самым знаменитым приложением этих новых числовых систем стала Великая теорема Ферма – утверждение о том, что уравнение Ферма, xn + yn = zn, не имеет целочисленного решения, если n равно или больше 3. Никому не удавалось восстановить якобы найденное Ферма «чудесное доказательство», и чем дальше, тем больше было сомнений в том, что он в принципе его создал. Но был достигнут и некоторый прогресс. Ферма нашел доказательство для третьей и четвертой степеней, Петер Лежён Дирихле в 1828 г. преодолел пятую степень, Анри Лебег нашел доказательство для седьмой степени в 1840 г.
В 1847 г. Габриель Ламе заявил, что нашел доказательство для любой степени, но Эрнст Эдуард Куммер указал на допущенную им ошибку. Ламе без доказательств принял утверждение, что единственность разложения числа на простые множители справедлива для алгебраических чисел, но это неверно для некоторых (скорее, для большинства) полей алгебраических чисел. Куммер показал, что единственность не соблюдается для поля, полученного в исследовании Великой теоремы Ферма для 23-й степени. Однако это не обескуражило Куммера, и он нашел способ обойти возражение, изобретя новый математический аппарат – теорию идеальных чисел. В 1847 г. он доказал теорему Ферма для всех подряд степеней вплоть до 100, за исключением 37, 59 и 67. Развивая свое изобретение, ученый сумел справиться и с этими случаями в 1857 г. К 1980-м гг. эти методы позволили найти доказательства для всех случаев до 150 000-й степени, но их возможности к этому моменту оказались практически исчерпаны.
Назад: Абстрактные группы
Дальше: Кольца, поля и алгебры