Ламберт
Немецкий математик Георг Клюгель прочел книгу Саккери и выразил новаторское и даже несколько шокирующее мнение, что убежденность в правоте пятого постулата относится скорее к области опыта, чем логики. Он утверждал, что некая особенность нашего образа мышления и представления о пространстве заставляет нас верить в существование параллельных линий со свойствами, которые описал Евклид.
В 1776 г. Иоганн Ламберт, следуя предположению Клюгеля, занялся исследованиями, похожими на работу Саккери, но он начал с четырехугольника с тремя прямыми углами. Четвертый угол у него мог быть или прямым (евклидова геометрия), или тупым, или острым. Как и Саккери, он предположил, что тупой угол приводит к противоречию. Точнее, он решил, что это приводит к сферической геометрии, где давно известно, что сумма углов четырехугольника больше 360°, поскольку сумма углов треугольника больше 180°. Раз сфера – это не плоскость, вариант с тупым углом исключался.
Однако Ламберт ничего подобного не утверждал для острого угла. Зато он доказал ряд любопытных теорем, однако самой блестящей оказалась выведенная им формула вычисления площади многоугольника с n сторонами. Сложите все углы и вычтите их из суммы 2n – 4 прямых углов: результат окажется пропорциональным площади многоугольника. Эта формула напомнила Ламберту похожую из сферической геометрии: сложите все углы и вычтите 2n – 4 прямых угла: результат снова окажется пропорциональным площади многоугольника. Разница несущественна: вычитание выполняется в обратном порядке. Ученый подошел вплотную к неясному, но пророческому утверждению: геометрия острого угла такая же, как у сферы с мнимым радиусом.
Ламберт тут же написал короткую статью о тригонометрических функциях мнимых углов, выведя несколько изящных и идеально согласующихся формул. Теперь мы признаём эти функции: это так называемые гиперболические функции, которые можно вычислить, не прибегая к мнимым числам, и они удовлетворяют всем формулам Ламберта. Было очевидно, что за его неожиданным, загадочным предположением кроется что-то интересное. Но что?