Книга: Кроличья нора, или Что мы знаем о себе и Вселенной
Назад: Подумайте об этом…
Дальше: Потрясение № 4 – принцип неопределенности

Потрясение № 1 – пустое пространство

Давайте начнем с того, что известно большинству. Одну из первых трещин в прочной конструкции ньютоновской физики сделало следующее открытие: атомы – эти твердые стандартные блоки физической Вселенной! – состоят главным образом из пустого пространства. Насколько пустого? Если увеличить ядро атома водорода до размера баскетбольного мяча, то единственный вращающийся вокруг него электрон будет находиться на расстоянии в тридцать километров, а между ядром и электроном – ничего. Так что, глядя вокруг, помните: реальность – это мельчайшие точечки материи, окруженные пустотой.

Впрочем, не совсем так. Эта предполагаемая «пустота» на самом деле не пуста: она содержит колоссальное количество невероятно мощной энергии. Мы знаем, что энергия становится все плотнее по мере перехода на более низкий уровень материи (например, ядерная энергия в миллион раз мощнее химической). Сейчас ученые говорят, что в одном кубическом сантиметре пустого пространства больше энергии, чем во всей материи известной Вселенной. Хотя ученые не смогли измерить ее, они видят результаты действия этого моря энергии.

Потрясение № 2 – частица, волна или волночастица?

Мало того, что атом почти сплошь состоит из «пространства» – когда ученые более глубоко исследовали его, обнаружили, что субатомные (составляющие атом) частицы также не сплошные. И, похоже, они имеют двойственную природу. В зависимости от того, как мы их наблюдаем, они могут вести себя или как твердые микротела, или как волны.

Частицы – это отдельные твердые объекты, занимающие определенное положение в пространстве. А волны не имеют «тела», они не локализованы и распространяются в пространстве (вспомните волны на море).

В качестве волны электрон или фотон (частица света) не имеет точного местоположения, но существует как «поле вероятностей». В состоянии частицы поле вероятностей «схлопывается» (коллапсирует) в твердый объект. Его координаты в четырехмерном пространстве-времени уже можно определить.

У меня квантовая теория вызывает неуверенность и головокружение. Она описывает микромир так, что он представляется чем-то сверхъестественным, волшебным. Так я смотрел на окружающее в детстве. И что теперь можно сказать обо мне – том мальчишке, мечтателе и фантазере? Я что, бредил? Возможно. Но вот вопрос: где проходит грань между квантовым микромиром и «нашим» миром макрообъектов? Если я состою из субатомных частиц, которые способны творить волшебство… Может быть, я тоже способен на нечто подобное?

– Марк —

Это удивительно, но состояние частицы (волна или твердый объект) задается актами наблюдения и измерения. Не измеряемые и не наблюдаемые электроны ведут себя подобно волнам. Как только мы подвергаем их наблюдению в процессе эксперимента, они «схлопываются» в твердые частицы и могут быть зафиксированы в пространстве.

Но как может быть что-то одновременно и твердой частицей, и текучей волной? Возможно, парадокс будет разрешен, если мы вспомним то, о чем недавно говорили: частицы ведут себя как волны или как твердые объекты. Но понятия «волна» и «частица» – это всего лишь аналогии, взятые из нашего повседневного мира. Понятие волны было введено в квантовую теорию Эрвином Шредингером. Он автор знаменитого «волнового уравнения», которое математически обосновывает существование у твердой частицы волновых свойств до акта наблюдения. Некоторые физики – в попытке объяснить то, с чем они никогда не сталкивались и не могут до конца разобраться, – называют субатомные частицы «волночастицами».

Вниз по кроличьей норе с частицами

Когда Шредингер сформулировал волновое уравнение, Гейзенберг решил ту же задачу с помощью теории матриц. Но математика – штука сложная. Она далека от повседневных, обыденных представлений. К тому же ее понятия не столь образны, как, например, «волна». Поэтому волновое уравнение было принято более благосклонно, чем матричные преобразования. Хотя и то, и другое – лишь аналогии.

Потрясение № 3 – квантовые скачки и вероятность

Изучая атом, ученые обнаружили: когда электроны, вращаясь вокруг ядра, перемещаются с орбиты на орбиту, они не движутся в пространстве, как обычные объекты. Нет, они покрывают расстояния мгновенно. То есть исчезают в одном месте и появляются в другом. Этот феномен назвали квантовым скачком.

Мало того – ученые поняли, что не могут точно определить, где именно на новой орбите появится исчезнувший электрон или в какой момент он будет совершать скачок. Самое большее, что они смогли сделать, – рассчитать вероятность (на основании волнового уравнения Шредингера) нового местоположения электрона.

Пока субатомный объект находится в состоянии волны, неизвестно, во что он превратится, когда его будут наблюдать и он локализуется в пространстве. Он находится в состоянии «множественных вероятностей» (такое состояние называют суперпозицией). Это что-то вроде подбрасывания монетки в темной комнате. С математической точки зрения, даже после того, как она упадет, нельзя определить, лежит она вверх орлом или решкой. Но как только в комнате включается свет, суперпозиция «схлопывается», и мы узнаем: монета стала «орлом» или «решкой». Измерение волны в квантовом эксперименте (подобно свету, падающему на монетку) «схлопывает» квантовую механическую суперпозицию, и образуется частица в «классическом» состоянии.

«Реальность, как мы ее ощущаем, создается в каждый момент времени из совокупности бесчисленных возможностей, – говорит доктор Сатиновер. – Но настоящая тайна – в том, что нет ничего в физической Вселенной, что бы определяло, какая именно возможность из этой совокупности осуществится. Нет процесса, который это устанавливает».

Таким образом, квантовые скачки – единственные по-настоящему случайные события во Вселенной.

Назад: Подумайте об этом…
Дальше: Потрясение № 4 – принцип неопределенности