Дополнительная литература
Простое перечисление всех научных работ, результаты которых лежат в основе представления о планетах, изложенного на страницах «Фабрики планет», потребовало бы еще одной книги такого же объема. Дабы не перегружать читателей, я попыталась отобрать исследования и обзоры, в которых содержатся основные результаты и которые вряд ли широко известны за пределами научного мира.
Предисловие. Слепцы и планеты
Открытие первой планеты, обращающейся вокруг солнцеподобной звезды — 51 Пегаса b: M. Mayor & D. Queloz 1995. A Jupiter-mass companion to a solar-type star. Nature 378:355–359.
Открытие первой планеты транзитным методом — HD 209458. Две статьи, в которых сообщалось о находке, были опубликованы в выпуске журнала за январь 2000 г., который на самом деле увидел свет в декабре 1999 г.: 1. D. Charbonneau et al. 2000. Detection of planetary transits across a Sun-like star. The Astrophysical Journal Letters 529: L45–48; 2. G. Henry et al. 2000. A transiting ‘51 Peg-like’ planet. The Astrophysical Journal Letters 529: L41–44.
Глава 2. Небывалая стройка
Исчерпывающий обзор исследований, посвященных процессу формирования планет — от пыли до планетезималей: A. Johansen et al. 2014. The multifaceted planetesimal formation process. В Protostars and Planets VI (University of Arizona Press, Tuscon, USA, 2014). Данный обзор дополняет результаты дискуссий в рамках конференции Protostars and Planets VI, с которыми можно познакомиться онлайн по адресу: www.mpia.de/homes/ppvi.
Глава 4. Воздух и море
Обзор работ Эрнста Эпика, составленный Фредом Уипплом: F. Whipple 1972. Ernst Öpik’s research on comets. Irish Astronomical Journal Supplement 10:71–76.
Глава 5. Планета, которой не может быть
Отличный источник великолепных описаний вновь открытых экзопланет — блог Шона Реймонда PlanetPlanet (planetplanet.net).
Описание модели смены галса: K. Walsh 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209.
Описание модели Ниццы: R. Gomes et al. 2005. Origin of the cataclysmic Late Heavy Bombardment period of terrestrial planets. Nature 435:466–469.
Описание модели Ниццы II: H. Levison et al. 2011. Late orbital instabilities in the outer planets induced by interaction with a selfgravitating planetesimal disk. The Astronomical Journal 142:152–162.
Планета с плотностью полистирола — WASP-17 b: D. Anderson et al. 2010. WASP-17 b: An ultra-low density planet in a probable retrograde orbit. The Astrophysical Journal 709:159–167. Открытие было описано в Wired (where Coel Hellier is quoted) 2009: Aack, no breaks! Giant new exoplanet goes the wrong way, http://bit.ly/2kuEaGc.
Глава 6. Мы — отклонение от нормы
Окончательные результаты измерения массы Кеплер-93 b были опубликованы в: C. Dressing et al. 2015. The Mass of Kepler-93b and the composition of terrestrial planets. The Astrophysical Journal 800:135–141
Результаты измерения массы Кеплер-138 d (тогда планета называлась по-другому — KOI-314c) методом анализа изменения времени наступления транзитов: D. Kipping et al. 2014. The hunt for exomoons with Kepler (HEK): IV. A search for moons around eight M dwarfs. The Astrophysical Journal 784:28–41. Пресс-релиз Гарвард-Смитсоновского центра астрофизики (включая цитату Киппинга) за 2014 г.: Newfound planet is Earth-mass but gassy, http://bit.ly/2kvR47c.
Описание эмпирически выведенного принципа, согласно которому при радиусе более 1,5 радиуса Земли планета, как правило, является мини-нептуном, а не твердотельной планетой: L. Rogers 2015. Most 1.6 Earth-radius planets are not rocky. The Astrophysical Journal 801:41–53.
Исследования, посвященные вопросу формирования суперземель из протопланетных дисков разной формы: 1. H. Schlichting 2014. Formation of close in super Earths and mini-Neptunes: required disk masses and their implications. The Astrophysical Journal Letters 795: L15–19; 2. S. Raymond & C. Cossou 2014. No universal minimum-mass extrasolar nebula: evidence against in situ accretion of systems of hot super Earths. Monthly Notices of the Royal Astronomical Society: Letters 440: L11–15.
Образование мини-нептуна в результате перетекания атмосферы горячего юпитера: F. Valsecchi, F. Rasio & J. Steffen 2014. From hot Jupiters to super Earths via Roche lobe overflow. The Astrophysical Journal Letters 793: L3–8.
Образование суперземли в результате «сгребания» материала горячим юпитером: S. Raymond, A. Mandell & S. Sigurdsson 2006. Exotic Earths: forming habitable worlds with giant planet migration. Science313:1413–1416.
Открытие Кеплер-11 с шестью планетами было описано (с цитатами, указывающими на удивление Джека Лиссауэра) NASA в 2011 г.: NASA’s Kepler Spacecraft discovers extraordinary new planetary system, http://go.nasa.gov/2kKtimo, а также на ряде других сайтов, включая Guardian 2011: NASA scientists discover planetary system, http://bit.ly/2lv7ydU.
Формирование суперземли на краю мертвой зоны: S. Chatterjee & J. Tan 2014. Inside-out planet formation. The Astrophysical Journal 780:53–64.
Компьютерное моделирование изменения направления миграции: C. Cossou et al. 2014. Hot super Earths and giant planet cores from different migration histories. Astronomy & Astrophysics 569: A56–71.
Глава 7. Вода, алмазы, лава — неведомые рецепты планетообразования
Обсуждение моделей образования планетезималей вокруг богатых углеродом звезд в работе Торренса Джонсона и Джонатана Лунина: T. Johnson et al. 2012. Planetesimal compositions in exoplanet systems. The Astrophysical Journal 757:192–202. Шутка Джонсона об «отсутствии снега за снеговой линией» и наблюдение Лунина относительно углеродных миров содержатся в сопроводительном пресс-релизе Лаборатории реактивного движения за 2013 г.: Carbon Worlds May be Waterless, Finds NASA Study, http://go.nasa.gov/2kVk0WA.
Возможные изменения в геологии твердотельных планет с разным составом: 1. C. Unterborn et al.2014. The role of carbon in extrasolar planetary geodynamics and habitability. The Astrophysical Journal793:124–123; 2. J. Bond, D. O’Brien & D. Lauretta 2010. The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. The Astrophysical Journal 715:1050–1070.
Оценка объема углерода в звезде 55 Рака: J. Teske et al. 2013. Carbon and oxygen abundances in cool metal-rich exoplanet hosts: A case study of the C/O ratio of 55 Cancri. The Astrophysical Journal 778:132–140.
Возможность формирования богатых углеродом планет даже в протопланетном диске с долей C/O более 0,65: J. Moriarty, N. Madhusudhan & D. Fischer 2014. Chemistry in an evolving protoplanetary disc: Effects on terrestrial planet composition. The Astrophysical Journal 787:81–90.
Может ли 55 Рака e быть углеродным миром? N. Madhusudhan, K. Lee & O. Mousis 2012. A possible carbon-rich interior in super Earth 55 Cancri e. The Astrophysical Journal Letters 759: L40–44.
Пресс-релиз Кембриджского университета, посвященный 55 Рака e (включая слова Мадхусудана), за 2015 г.: Astronomers find first evidence of changing conditions on a super Earth, http://bit.ly/1c0gsu1.
Геология потенциально богатых магнием планет вокруг Тау Кита: M. Pagano et al. 2015. The chemical composition of τ Ceti and possible effects on terrestrial planets. The Astrophysical Journal 803:90–95.
Колебания температуры на 55 Рака e: 1. B.-O. Demory et al. 2016. Variability in the super Earth 55 Cnc e. Monthly Notices of the Royal Astronomical Society 455:2018–2027; 2. B.-O. Demory et al. 2016. A map of the large day-night temperature gradient of a super Earth exoplanet. Nature 532:207–209.
Атмосфера CoRoT-7 b, функционирующая по принципу ректификационной колонны: L. Schaefer & B. Fegley 2009. Chemistry of silicate atmosphere of evaporating super Earths. The Astrophysical Journal Letters703: L113–117. Статья на ту же тему, опубликованная Университетом Вашингтона в Сент-Луисе (включая цитату Фегли) в 2009 г.: Forecast for discovered exoplanet: clouds with a chance of pebbles, http://bit.ly/2ku8GQF.
Гелиевая атмосфера Глизе 436 b: R. Hu, S. Seager & Y. Yung 2015. Helium atmosphere on warm Neptune- and sub-Neptune-sized exoplanets and applications to GJ 436b. The Astrophysical Journal 807:8–21. Пресс-релиз на эту тему Лаборатории реактивного движения (с цитатой Сигер) за 2015 г.: Helium-shrouded planets may be common in our Galaxy, http://go.nasa.gov/2k5MrNG.
Глава 8. Миры вокруг мертвых звезд
Прекрасный обзор открытий планет вокруг пульсаров представлен в работе Кена Кросвелла (Ken Croswell) Planet Quest: the Epic Discovery of Alien Solar Systems (Free Press, New York, USA, 1997).
Если вы хотите погрузиться в тему пульсаров, прочтите написанную живым, понятным языком работу Джеффа МакНамары (Geoff McNamara) Clocks in the Sky: the Story of Pulsars (Praxis Publishing Ltd, Chichester, UK, 2008).
Открытие первого миллисекундного пульсара: D. Backer et al. 1982. A millisecond pulsar. Nature300:615–618.
Открытие Вольщана и Фрейла также описывается в статье Чарльза Дюбуа в Penn State News 1997: Planets from the Very Start, http://bit.ly/2kurW0x.
Узнайте об открытии планет вокруг пульсаров от самого Алекса Вольщана: A. Wolszczan 2012. Discovery of pulsar planets. New Astronomy Reviews 56:2–8.
Характерная вспышка «черной вдовы» — пульсара PSR J1311-3430: H. Pletsch et al. 2012. Binary millisecond pulsar discovery via Gamma-ray pulsations. Science 338:1314–1317.
Звезда, которая превратилась в алмазный мир, на орбите вокруг пульсара PSR J17191438: M. Bailes et al. 2011. Transformation of a star into a planet in a millisecond pulsar binary. Science 333:1717–1720.
Глава 9. Системы с двумя солнцами
Рассказ Уолкера о том, как он едва не открыл планету в окрестностях γ Цефея: G. Walker 2012. The first high-precision radial velocity search for extra-solar planets. New Astronomy Reviews 56:9–15.
Официальное объявление об открытии планеты рядом с γ Цефея: A. Hatzes et al. 2003. A planetary companion to γ Cephei A. The Astrophysical Journal 599:1383–1394.
Обзор дисков вокруг молодых звезд в комплексе Тельца–Возничего: R. Harris et al. 2012. A resolved census of millimeter emission from Taurus multiple star systems. The Astrophysical Journal 751:115–134.
Сравнение планет в двойных системах с различными расстояниями между компонентами: J. Wang et al. 2014. Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 au. The Astrophysical Journal 791:111–126.
Обзор исследований негативного влияния двойных звезд на процесс образования планет на околозвездных орбитах: Thébault & Haghighipour 2014. Planet formation in binaries. In Planetary Exploration and Science: Recent Advances and Applications (Springer Geophysics, Heidelberg, Germany, 2015).
Описание моделей, используемых для определения наличия в протопланетном диске вокруг γ Цефея достаточного количества материала для формирования газового гиганта: H. JangCondell, M. Mugrauer & T. Schmidt 2008. Disk truncation and planet formation in γ Cephei. The Astrophysical Journal Letters 683: L191–194.
Обнаружение планет вокруг альфы Центавра B: X. Dumusque et al. 2012. An Earth-mass planet orbiting α Centauri B. Nature 491:207–211.
Относительно недавний анализ данных, поставивших под вопрос существование планеты: A. Hatzes 2013. The radial velocity detection of Earth-mass planets in the presence of activity noise: The case of α Centauri Bb. The Astrophysical Journal 770:133–148.
Объявление об обнаружении татуиноподобного мира Кеплер-16 b: L. Doyle et al. 2011. Kepler-16: A transiting circumbinary planet. Science 333:1602–1606.
Tеория, объясняющая появление системы, состоящей из пульсара, белого карлика и трио газовых гигантов (PSR 1620–26), была предложена приблизительно через 10 лет после открытия: S. Sigurdsson et al. 2003. A young white dwarf companion to pulsar B1620-26: Evidence for early planet formation. Science301:193–196.
Вопрос о возможности интерпретации наблюдаемых колебаний в транзитах в двойных системах в качестве свидетельства существования планет рассматривается в J. Horner et al. 2012. A detailed investigation of the proposed NN Serpentis planetary system. Monthly Notices of the Royal Astronomical Society425:749–756.
Планета в системе, состоящей из трех звезд, — HD 131399A b: K. Wagner et al. 2016. Direct imaging discovery of a Jovian exoplanet within a triple-star system. Science 353:673–678.
Статья Фила Плейта о HD 131399A b, опубликованная в Slate в 2016 г.: An alien planet orbits in a triple-star system… and we have photos, http://slate.me/29JnqoY.
Глава 10. Место преступления — планетная система
Прекрасная серия публикаций о внешней части Солнечной системы в блоге Майка Брауна: www.mikebrownsplanets.com.
Открытие карликовой планеты Седны: M. Brown, C. Trujillo & D. Rabinowitz 2004. Discovery of a candidate Inner Oort Cloud planetoid. The Astrophysical Journal 671:645–649.
Изменения в орбите молодого Нептуна, которые, возможно, стали причиной рассеивания далеких карликовых планет: R. Dawson & R. Murray-Clay 2012. Neptune’s wild days: Constraints from the eccentricity distribution of the classical Kuiper Belt The Astrophysical Journal 750:43–71.
Измерение центра масс нашей Солнечной системы с использованием сигналов пульсаров: N. Zakamska & S. Tremain 2005. Constraints on the acceleration of the solar system from high-precision timing. The Astrophysical Journal 130:1939–1950.
Возможность перехода массивных планет, движущихся по вытянутым орбитам, на круговые орбиты под влиянием газового диска: B. Bromley & S. Kenyon 2014, The fate of scattered planets. The Astrophysical Journal 796:141–149.
Планета с одной из «самых сильных бурь в Галактике» — HD 80606 b: G. Laughlin et al. 2009. Rapid heating of the atmosphere of an extrasolar planet. Nature 457:562–564. Пресс-релиз NASA, в котором цитируются слова Лафлина, за 2009 г.: Spitzer watches wild weather on a star-skimming planet, http://go.nasa.gov/2ltA3J6.
Выталкивание планеты из системы Ипсилон Андромеды A в качестве объяснения сильно искаженных орбит двух других планет: E. Ford, V. Lystad & F. Rasio 2005. Planet — planet scattering in the u Andromedae system. Nature 434:873–876. Smaller planets have less eccentric orbits: V. Van Eylen & S. Albrecht 2015. The Astrophysical Journal 808:126–145.
Глава 11. Блуждающие планеты
Прекрасная статья Шона Реймонда в журнале Aeon: Life in the dark, http://bit.ly/2jF2R2g.
Рассмотрение вопроса о возможности существования в прошлом еще одного газового гиганта в Солнечной системе: D. Nesvorny & A. Morbidelli 2012. Statistical study of the early Solar System’s instability with four, five and six giant planets. The Astronomical Journal 144:117–136.
Открытие HD 106906 b — мира, находящегося на очень большом расстоянии от нас, в окружении остаточного диска: V. Bailey et al. 2014. HD 106906 b: A planetary mass companion outside a massive debris disk. The Astrophysical Journal Letters 740: L4–9.
Последующие наблюдения, выявившие асимметричность диска: P. Kalas et al. 2015. Direct imaging of an asymmetric debris disk in the HD 106906 planetary system. The Astrophysical Journal 814:32–43.
Описание результатов наблюдений, позволивших обнаружить крошечные плотные облака, которые могли схлопнуться в объекты размером с планету (как раз члены этой группы исследователей предложили термин «глобулета»): G. Gahm et al. 2013. Mass and motion of globulettes in the Rosette Nebula. Astronomy & Astrophysics 555: A57–73.
Возможность удержания блуждающей Землей тепла рассматривается в ряде публикаций, включая: 1. D. Stevenson 1999. Life-sustaining planets in interstellar space? Nature 400:32; 2. G. Laughlin & F. Adams 2000. The frozen Earth: binary scattering events and the fate of the Solar System. Icarus 145:614–627; 3. D. Abbot & E. Switzer 2011. The steppenwolf: a proposal for a habitable planet in interstellar space. The Astrophysical Journal Letters 735: L27–30; 4. J. Debes & S. Sigurdsson 2007. The survival rate of ejected terrestrial planets with moons. The Astrophysical Journal Letters 668: L167–170.
Глава 12. Условия для жизни
Границы зоны умеренных температур (также называемой зоной жизни, зоной обитаемости или зоной Златовласки): J. Kasting, D. Whitmire & R. Reynolds 1993. Habitable zones around main sequence stars. Icarus101:108–128.
Зона Венеры: S. Kane, R. Kopparapu & S. Domagal-Goldman 2014. On the frequency of potential Venus analogs from Kepler data. The Astrophysical Journal Letters 794: L5–9.
Глава 13. Поиски второй Земли
Открытие первой планеты в зоне умеренных температур транзитным методом — Кеплер-22 b: W. Borucki et al. 2012. Kepler-22b: A 2.4 Earthradius planet in the habitable zone of a Sun-like star. The Astrophysical Journal 745:120–135. Пресс-релиз NASA (с цитатой Боруки) за 2011 год: NASA’s Kepler mission confirms its first planet in the habitable zone of a Sun-like star, http://go.nasa.gov/2kpfix8.
Открытие Глизе 581 c (провозглашенной «самой похожей на Землю из всех известных экзопланет» на тот момент): S. Udry et al. 2007. The HARPS search for southern extra-solar planets XI. Super Earths (5 and 8 M⊕) in a 3-planet system. Astronomy & Astrophysics Letters 469: L43 — L47.
Существование Глизе 581 d и g было поставлено под сомнение в работе P. Robertson et al. 2014. Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science 345:440–444.
Описание землеподобной планеты Кеплер-186 f: E. Quintana et al. 2014. An Earthsized planet in the habitable zone of a cool star. Science 344:277–280.
Рассказ Натали Батальи о попытках зафиксировать прохождение планеты такого же размера, как наша, и с такой же орбитой, как у нашей планеты, представлен в документальном фильме 2014 г., снятом Advexon TV NOVA: Kepler 186 f — Life after Earth, http://bit.ly/1xPw9Jj.
Доля землеподобных миров: 1. F. Fressin et al. 2013. The false positive rate of Kepler and the occurrence of planets. The Astrophysical Journal 766:81–100; 2. C. Dressing & D. Charbonneau 2013. The occurrence rate of small planets around small stars. The Astrophysical Journal 767:95–114.
Открытие ближайшей к нам экзопланеты: G. Anglada-Escudé et al. 2016. A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440.
Глава 14. Инопланетные пейзажи
Попытка изучения атмосферы Глизе 1214 b с помощью космического телескопа «Хаббл»: L. Kreidberg et al. 2014. Clouds in the atmosphere of the super Earth exoplanet GJ1214b. Nature 505:69–72.
Вода в мантии вместо полностью покрытого водой мира: N. Cowan & D. Abbott 2014. Water cycling between ocean and mantle: super Earths need not be water worlds. The Astrophysical Journal 781:27–33.
Неспособность океанов регулировать температуру планеты: D. Kitzmann et al. 2015. The unstable CO2feedback cycle on ocean planets. Monthly Notices of the Royal Astronomical Society 452:3752–3758.
Жизнь на ядре газового гиганта: R. Luger et al. 2015. Habitable evaporated cores: Transforming mini-Neptunes into super Earths in the habitable zones of M dwarfs. Astrobiology 15:57–88.
Отличная статья Шона Реймонда в журнале Nautilus: Forget ‘Earth-Like’ — we’ll first find aliens on eyeball planets. http://bit.ly/1vRsb1J.
Возможность существования атмосферы на мире типа «глазное яблоко»: M. Joshi, R. Haberle & R. Reynolds 1997. Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: Conditions for atmospheric collapse and the implications for habitability. Icarus 129:450–465.
Климат планет типа «глазное яблоко» и наличие на них воды: R. Pierrehumbert 2011. A palette of climates for Gliese 581g. The Astrophysical Journal Letters 726: L8–12.
Поворот атмосферы как средства выхода из приливного захвата: J. Leconte et al. 2015. Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347:632–635.
Формы зон умеренных температур в окрестностях двойных звезд и стабильных циркумбинарных орбит: S. Kane & N. Hinkel 2013. On the habitable zones of circumbinary planetary systems. The Astrophysical Journal 762:7–14.
Границы зоны умеренных температур на рисунке 22 основываются на расчетах, представленных на сайте, упомянутом в: T. Müller & N. Haghighipour 2014. Calculating the habitable zone of multiple star systems with a new interactive website. The Astrophysical Journal 782:26–43. http://astro.twam.info/hz.
Влияние второй звезды на планеты на околозвездных орбитах в двойных системах: S. Eggl et al. 2012. An analytics method to determine habitable zones for S-type planetary orbits in binary star systems. The Astrophysical Journal 752:74–84.
Возможность существования воды в жидкой фазе и жизни на землеподобном мире с вытянутой орбитой: 1. D. Williams & D. Pollard 2002. Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. International Journal of Astrobiology 1:61–69; 2. S. Kane & D. Gelino 2012. The habitable zone and extreme planetary orbits. Astrobiology 12:940–945.
Сверхпригодный для жизни мир: 1. René Heller’s 2015 article for Scientific American 312:20–27. Better than Earth; 2. R. Heller & J. Armstrong 2013. Superhabitable worlds. Astrobiology 14:50–66.
Глава 15. За пределами зоны жизни
Доказательства тектонической активности плит на Европе: S. Kattenhorn & L. Prockter 2014. Evidence for subduction in the ice shell of Europa. Nature Geoscience 7:762–767.
Глава 16. Фабрика лун
Обзор исследований, посвященных лунам во внешней части Солнечной системы и процессу их формирования: R. Heller et al. 2014. Formation, habitability and detection of extrasolar moons. Astrobiology14:798–835.
Образование Тритона в результате разрушения двойной системы: C. Agnor & D. Hamilton 2006. Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441:192–194.
Глава 17. Поиски жизни
Поиски биомаркеров на Земле: C. Sagan et al. 1993. A search for life on Earth from the Galileo spacecraft. Nature 365:715–721.
Соотношение углерода 12 и углерода 13 в атмосфере Титана по данным зонда «Гюйгенс»: H. Riemann at al. 2005. The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784.
Статья Нэнси Кианг 2008 г. в журнале Scientific American 298:48–55. The colour of plants on other worlds.
Наконец, если вы готовы к знакомству с уравнениями в сопровождении хорошо написанного текста, я рекомендую книгу Калеба Шарфа (Caleb Scharf) Extrasolar Planets and Astrobiology (University Science Books, Sausalito, CA, USA, 2009).