Книга: Фабрика планет. Экзопланеты и поиски второй Земли
Назад: Глава 11. Блуждающие планеты
Дальше: Глава 13. Поиски второй Земли

Глава 12. Условия для жизни

Как впоследствии отмечал Стивен Кейн, это было время, когда горячие юпитеры все еще были горячей темой — настолько горячей, что за каждым новым открытием обязательно следовала пресс-конференция. Однажды Кейну, который входил в состав группы исследователей, обнаружившей падение яркости звезды из-за проходящей по ее диску планеты, довелось выступать с рассказом о характеристиках нового мира перед толпой журналистов. Находка была газовым гигантом без твердой поверхности. Объем планеты в тысячу раз превышал объем Земли и был практически целиком заполнен атмосферой колоссальных размеров. В центре этого бурлящего моря газа должно быть твердое ядро. Причем давление на его поверхности должно в 40 млн раз превышать давление на поверхности нашей планеты. В условиях сокрушительного давления водород на такой глубине должен переходить в металлическую фазу, которую исключительно трудно воспроизвести даже в лаборатории. Орбита этого горячего юпитера настолько короткая, что год на нем длится всего лишь четверо земных суток. Из-за близости к огненному шару звезды температура верхних слоев атмосферы планеты достигает, согласно оценкам исследователей, умопомрачительно высокого значения — 2700 °C. Когда Кейн закончил свой рассказ, один из журналистов поднял руку и спросил: «Как вы думаете, на этой планете может быть жизнь?»
Нами движет практически непреодолимое желание отыскать пригодную для жизни планету. Идея о возможности существования во Вселенной других планет, на которых могут быть условия для зарождения жизни, завладела воображением людей еще во II веке до н.э. и будоражит наши умы до сих пор: одни с трепетом ждут встречи с внеземными существами, другие руководствуются практическими соображениями, надеясь, что однажды люди обретут второй дом; наконец, третьими движет тяга ко всему неизведанному.
В течение последних двух десятилетий существование похожего на Землю мира из области научной фантастики перешло в сферу научных фактов. Начавшись с открытия юпитероподобных миров, обращающихся в непосредственной близости от своих звезд, работа по обнаружению планет достигла стадии, когда мы можем находить планеты, сопоставимые по размеру с нашим каменистым космическим домом. С ростом числа планет, которые своим радиусом и массой все больше походят на нашу, все чаще звучат заявления о второй Земле — «Земле 2.0». Так что перспектива открытия самой настоящей межзвездной сети кофеен уже не кажется такой уж абсурдной. Впрочем, сопоставимые с земными размеры — далеко не определяющая характеристика. Чтобы найти критерии действительно пригодной для жизни планеты, мы должны выяснить, что делает Землю нашим домом.
Словосочетание зона возможной жизни, или, короче, зона жизни, является, наверное, одним из самых досадных терминологических промахов в планетологии. Как и более причудливый вариант зона Златовласки, эти слова вызывают в воображении образы озер с кристально чистой водой, буйной зелени и аппетитно дымящейся тарелки с овсяной кашей на завтрак. К сожалению, все это не имеет никакого отношения к тому смыслу, который вкладывают в него ученые.
Предложивший этот термин в 1959 г. исследователь из Калифорнийского университета в Беркли Су-Шу Хуан понимал под зоной жизни такую область вокруг звезды, в пределах которой на поверхности Земли может существовать вода. Окажись Земля ближе к звезде, ее моря бы испарились. Отдались она от Солнца на слишком большое расстояние, и вода бы замерзла, превратившись в лед. Температура в зоне жизни не слишком высокая и не слишком низкая — она именно такая, какой должна быть.
К сожалению, подобно тому, как у разных людей могут быть разные представления об идеальной температуре овсянки, разным планетам может требоваться разное количество света звезды для формирования оптимальных условий для развития жизни. Доступного в зоне жизни света может оказаться недостаточно для появления кишащих жизнью океанов на планете, условия на поверхности которой отличаются от земных. Например, менее крупная планета, скорее всего, аккумулирует атмосферу меньшей толщины, чем земная, а значит, температура на ее поверхности будет слишком низкой, чтобы даже в зоне жизни на ней были моря с водой в жидкой фазе. С другой стороны, в зоне жизни обнаружено в пять раз больше газовых гигантов, чем каменистых планет: вряд ли кто-нибудь получит удовольствие от тарелки овсянки в адских условиях атмосферы Нептуна. Нахождение в зоне возможной жизни совсем не гарантирует наличие на планете воды. Мир такого же размера, как Земля, сформировавшийся в богатом углеродом протопланетном диске, обречен на абсолютную сухость. Та же участь ждет и планету, не подвергшуюся бомбардировке покрытыми льдом метеоритами.
Учитывая все это, хочется призвать журналистов, сообщающих об открытии новых экзопланет, к большей сдержанности в оценках, Они часто бездумно используют термин «зона жизни», подразумевая наличие на таких планетах условий для существования жизни. В действительности нахождение в зоне жизни не говорит нам ничего об особенностях среды на поверхности планеты. Оно просто означает, что, если бы поверхность такой планеты была точно такой, как на Земле, вода в вашем стакане, окажись вы на ней, оставалась бы жидкой. Чтобы внести ясность в эту терминологическое путницу, ученые предприняли попытку переименовать зону жизни в «зону умеренных температур». Здесь акцент переносится на наличие благоприятного количества света от звезды без каких-либо намеков на медведей и овсянку. В дальнейшем мы будем следовать этой традиции, чтобы у читателя не возникало ощущения, что его водят за нос.
При самом простом способе определения местонахождения зоны умеренных температур, исходят из допущения, что планета нагревается исключительно светом, который добирается до нее от звезды. Проведя такой расчет для Земли, получим среднюю температуру на поверхности, равную всего лишь 5,3 °C. На самом деле ситуация усугубляется тем, что около трети солнечного тепла Земля отражает, поэтому расчетное значение температуры придется понизить до –18 °C. При такой температуре замерзнут все поверхностные воды, и мы окажемся за пределами области умеренных температур вокруг Солнца, которая будет простираться от 0,47 до 0,87 а.е. В этом случае идеальным местом для жизни была бы Венера, а Земля превратилась бы в большой «снежок». К счастью, средняя температура на поверхности Земли составляет 15 °C — на 33 °C выше результата, полученного путем простейшего расчета. Разницей этой мы обязаны тому, что атмосфера выступает в роли естественной теплицы, удерживающей тепло нашей планеты.
Поверхность Земли поглощает проходящее через атмосферу оптическое излучение Солнца. При этом планета нагревается и повторно излучает полученную энергию в виде тепла в инфракрасном диапазоне. Убедиться в этом можно в любой солнечный день. Если потрогать почву ровно в полдень, когда Солнце стоит прямо над головой, она покажется прохладной. Всего через пару часов она может разогреться настолько, что вы не сможете ходить по ней босиком. Между этими двумя крайними состояниями почва поглощает солнечные лучи, чтобы потом отдать их энергию в виде инфракрасного излучения.
Если оптическое излучение может беспрепятственно проходить через земную атмосферу к поверхности планеты, то инфракрасное излучение встречает на своем пути препятствие. Из-за большей длины волны атмосфера поглощает его, не давая покинуть планету. При этом атмосфера нагревается и отражает часть инфракрасного излучения обратно на Землю. Поверхность планеты подвергается дополнительному нагреву благодаря образованному атмосферой защитному покрову. Это явление назвали парниковым эффектом, поскольку прозрачная конструкция для выращивания овощей точно так же нагревает почву за счет удержания инфракрасного излучения и нагретого воздуха внутри остекленного пространства.
Количество энергии инфракрасного излучения, которое остается в атмосфере, зависит от поглощающих его молекул. Основными парниковыми газами в воздухе над поверхностью Земли являются водяной пар и углекислый газ. На водяной пар приходится две трети поглощающих инфракрасное излучение молекул. Еще четверть приходится на углекислый газ. Остальные несколько процентов обеспечиваются различными газами, включая метан, диоксид азота, озон и созданные человеком хлорфторуглероды.
Если сократить расстояние от Земли до Солнца, интенсивность проникающего в атмосферу ультрафиолетового излучения увеличится. Температура на планете повысится, что приведет к переходу большего количества воды в пар. Из-за резкого скачка содержания водяного пара в воздухе парниковый эффект усилится, а значит, больше тепла будет удерживаться в атмосфере. Как следствие, произойдет дальнейшее увеличение температуры поверхности Земли.
Земля может компенсировать рост температуры путем сокращения количества углекислого газа. Этот парниковый газ вступает в реакцию с дождевой водой, превращая ее в углекислоту, которая выпадает в виде так называемого кислотного дождя. При попадании на поверхность планеты кислая дождевая вода растворяет горные породы, вступая во взаимодействие с ними в рамках процесса химического выветривания, приводящего к образованию богатых углеродом минералов. Растворенные минеральные вещества смываются в океан, образуя твердые соединения углерода, такие как меловой карбонат кальция и известняк. В ходе этого процесса углерод удаляется из атмосферы, и планета охлаждается.
Углерод может возвращаться в атмосферу через жерла вулканов. При столкновении образующих земную кору гигантских тектонических плит одни из них погружаются под другие (этот процесс называют субдукцией). Вызываемое движением нижней плиты трение приводит к плавлению горных пород и высвобождению углекислого газа. Газ и силикатные породы прорываются на поверхность через вулканы. При этом формируются новые наслоения, а углекислый газ выбрасывается обратно в атмосферу.
Циклическое перемещение углерода называют циклом углерода. Он выступает в качестве своего рода термостата, корректирующего температуру Земли. Если планета начинает нагреваться, большее количество воды превращается в пар, и, как следствие, увеличивается интенсивность осадков. Это, в свою очередь, приводит к более активному взаимодействию углекислоты с горными породами, в результате которого она выводится из атмосферы. Из-за снижения содержания углекислого газа атмосфера задерживает меньше инфракрасного излучения, и планета охлаждается. И наоборот: когда температура на поверхности Земли опускается слишком низко, образуется лед, и количество осадков уменьшается. В более суровых климатических условиях интенсивность взаимодействия кислой воды и горных пород также снижается. При этом не только падает количество выводимого из атмосферы углекислого газа, но его становится еще и больше благодаря вулканической активности. Таким образом, количество парниковых газов увеличивается, атмосфера удерживает больше тепла, и планета нагревается.
Несмотря на свою эффективность, природный термостат работает очень медленно: цикл переноса углерода между атмосферой, горными породами и морями занимает 100–200 млн лет. Как раз в этой медлительности и заключается причина того, почему деятельность человека приводит к повышению температуры Земли: мы накачиваем атмосферу парниковыми газами намного быстрее, чем они могут быть выведены из нее путем химического выветривания. Если объем углекислого газа, попадающего в атмосферу в результате вулканической активности, составляет несколько сотен миллионов тонн в год, то выбросы от сжигания ископаемых видов топлива превышают его в сто раз, приближаясь к 30 млрд тонн.
Да, благодаря циклу углерода Земле удается справляться с незначительными колебаниями интенсивности солнечного излучения. Но его возможности далеко не безграничны. Если Земля окажется слишком близко к Солнцу, она не сможет оперативно среагировать на рост содержания водяного пара в атмосфере путем сокращения количества углекислого газа. Поэтому планета продолжит нагреваться, пара в атмосфере станет еще больше, а парниковый эффект усилится. При температуре 100 °C и выше выпадение осадков прекращается, процесс выведения углекислого газа прерывается. В результате испарения воды и вулканической активности в атмосфере продолжают накапливаться парниковые газы, температура непрерывно повышается. В условиях высоких температур углерод высвобождается из горных пород в атмосферу и вступает в реакцию с кислородом, еще больше увеличивая содержание в ней углекислого газа. Запускается необратимый цикл нагрева планеты, который завершается полным исчезновением воды с ее поверхности.
Возможно, нечто похожее случилось с Венерой. Располагаясь недалеко от нас, этот мир имеет практически те же размер, массу и состав, что и Земля. Однако, в отличие от нашей планеты, у Венеры толстая атмосфера из углекислого газа, ее недра бедны углеродом, а температура поверхности составляет 480 °C. Неудивительно, что при такой температуре, которой вполне достаточно, чтобы расплавить, например, свинец, ни один космический зонд не смог продержаться на поверхности Венеры больше двух часов. Пример планеты показывает, что сходство с Землей в размерах ничего не значит. На Венере определенно слишком горячо для каши Златовласки.
Теперь представим, что Земля отдаляется от Солнца. В этом случае благодаря круговороту углерода уровень углекислого газа повысится, что позволит планете оставаться теплой. Но как только температура упадет до значения, при котором углекислый газ конденсируется в облака, в механизме температурной регуляции произойдет сбой. Облака из углекислого газа будут отражать и блокировать больше солнечного излучения, ускоряя остывания планеты, вместо того чтобы препятствовать ему. При отдалении Земли от Солнца температура поверхности планеты упадет до нуля на расстоянии 1,4–1,7 а.е. Это точка, при пересечении которой перестает действовать парниковый эффект.
Границы зоны умеренных температур определяются пределами области, в которой температура поверхности Земли регулируется круговоротом углерода. При приближении к Солнцу Землю ждет судьба Венеры из-за слишком сильного парникового эффекта, тогда как при отдалении от звезды парниковый эффект перестанет действовать и планета замерзнет, превратившись в огромный снежок. Согласно консервативной оценке, в Солнечной системе зона умеренных температур начинается на расстоянии 0,95 а.е. и заканчивается на расстоянии 0,14 а.е.; при более гибком подходе ей отводят область между 0,84 а.е. и 1,7 а.е. Во втором варианте, предполагающем включение в зону дополнительного пространства, вода на Земле будет присутствовать не на всем протяжении ее жизни. Например, по имеющимся данным, около 3,8 млрд лет назад на поверхности Марса могла быть вода. На раннем этапе эволюции Венеры на ней также могла присутствовать вода в жидкой фазе. С учетом этих двух эпох в истории Венеры и Марса мы получаем максимально возможные пределы зоны умеренных температур.
Предполагается, что благодаря круговороту углерода внутри этой зоны температура на поверхности Земли будет оставаться в диапазоне от 0 до 100 °C, то есть на таком уровне, при котором вода на поверхности будет оставаться жидкой. Зависимость пределов зоны умеренных температур от состава атмосферы и геологического строения Земли означает, что у других планет они будут другими. Если, например, увеличить содержание углекислого газа в атмосфере Земли в 10 раз, то даже там, где она находится сейчас, на ней не будет воды в жидкой фазе. При другом составе газов в атмосфере или горных пород мы получим совершенно другой цикл, не имеющий ничего общего с земным.
Но какой тогда толк от понятия зоны умеренных температур, если оно распространяется только на планеты одного типа? Основная его задача — задать рамки для будущих астробиологических исследований. Вторая Земля будет найдена в пределах зоны умеренных температур, да и распознать жизнь на другой планете нам будет намного легче, если она будет походить на нашу. Однако само по себе нахождение в зоне умеренных температур не гарантирует наличие жизни, воды и даже твердой поверхности.
Если мы продолжим сокращать расстояние от Земли до Солнца, в определенный момент интенсивный солнечный свет нагреет атмосферу настолько сильно, что с планеты улетучатся все газы. При поглощении солнечной энергии молекулами их скорость увеличивается до значения, позволяющего им преодолеть гравитационное притяжение планеты. Точку, в которой под воздействием Солнца планета утрачивает атмосферу, называют космическим берегом. Как и в случае с парниковым эффектом, точное его расположение сильно зависит от особенностей конкретной планеты. Легкие атомы улетучиваются быстрее, чем тяжелые молекулы, а значит, планета с атмосферой, богатой водородом, лишится ее быстрее, чем планета, в атмосфере которой преобладают газы с высоким содержанием углерода и кислорода. Удерживает атмосферу гравитационное поле планеты. Поэтому чем массивнее мир, тем более устойчивы газы на его поверхности к излучению звезды. Мы уже упоминали данную зависимость в главе 6, когда рассматривали механизм превращения горячего юпитера в хтоническую суперземлю. Максимальное излучение, которое может выдержать атмосфера Земли, в 25 раз превышает то, которому она подвергается сейчас. Такая интенсивность излучения наблюдается на расстоянии около 0,2 а.е. Область между космическим берегом и зоной умеренных температур называют зоной Венеры. Это та часть пространства, в пределах которой в результате мощного парникового эффекта планета земного типа с большой вероятностью должна превратиться в похожее на Венеру адское пекло, в котором плавится даже свинец.
Есть некая несправедливость в том, что, несмотря на совершенно не подходящие для медведей и овсянки условия, легче всего обнаруживаются как раз планеты в зоне Венеры, так как они ближе к своей звезде, чем миры аналогичного размера в зоне умеренных температур. Поэтому при рассмотрении вопроса о пригодности того или иного экзомира для жизни обязательно нужно обращать внимание на границу между этими областями.
Еще один фактор, затрудняющий определение границ зоны умеренных температур, — это сама звезда. Светимость звезды меняется на протяжении ее жизни, и значит, в разные периоды существования звезды окружающая ее планетная система получает разное количество тепла. По мере превращения водорода в гелий, а затем и в более тяжелые элементы ядро звезды сжимается. Сжатие сопровождается выделением энергии, что приводит к усилению светимости звезды. Около 3–4 млрд лет назад наше Солнце было на 30% менее ярким, чем сейчас. Если бы количество получаемой Землей солнечной энергии уменьшилось на такую величину, температура на поверхности нашей планеты была бы ниже на 20 °C, чем сейчас. То есть большая часть Земли была бы заморожена. Но, как это ни странно, геологические данные показывают, что 4 млрд лет назад на поверхности Земле было более чем достаточно воды в жидкой фазе. От той эпохи до нас дошли осадочные породы, которые были сформированы в результате оседания в жидкости твердых частиц. Это называют парадоксом тусклого молодого Солнца.
Убедительного объяснения ему до сих пор не нашли. Согласно одной гипотезе, миллиарды лет назад атмосфера нашей планеты была совершенно другой — в ней было больше парниковых газов, способных удерживать тепло. В результате круговорота углерода уровень углекислого газа в атмосфере мог подняться до 80% от ее массы. По другой гипотезе, в результате жизнедеятельности ранних бактериальных форм жизни в атмосфере могло резко увеличиться содержание метана.
При определении зоны умеренных температур учитывается влияние излучения звезды на температуру на поверхности планеты земного типа. Однако звезды не единственный источник тепла.
Одновременно с тем, что можно называть собственно теплом, Солнце испускает непрерывный поток заряженных частиц, называемый солнечным ветром. Он распространяется по Солнечной системе со скоростью 300–1200 км/с, обрушиваясь на планеты и формируя четко различимые хвосты комет. Кроме того, во внешних слоях Солнца происходят локальные взрывы, для обозначения которых использует термин солнечные вспышки. В ходе них в направлении планет выбрасывается дополнительная порция высокоэнергетических частиц. Наконец, периодически некоторая часть солнечного вещества выбрасывается наружу в рамках явления под названием корональный выброс массы. Корональным такой выброс вещества называют потому, что происходит он во внешнем слое солнечной атмосферы — солнечной короне. Корональные выбросы могут вызывать на Земле геомагнитные бури, создающие помехи в работе электрических приборов и GPS-систем. Однако на Землю бурная активность Солнца практически не оказывает влияния, так как нашу планету защищает ее магнитное поле.
Если вы отправитесь в Гренландию на севере или в Новую Зеландию на юге, при определенном везении вы сможете наблюдать северное или южное полярное сияние. Когда испускаемый Солнцем поток заряженных частиц достигает Земли, магнитное поле нашей планеты перехватывает его и перенаправляет к полюсам. При взаимодействии частиц с атомами кислорода и азота в верхних слоях атмосферы Земли они испускают зеленый и синий свет, который и создает полярное сияние.
Не будь у Земли магнитного поля, солнечные частицы беспрепятственно бы достигали ее поверхности. Чтобы понять, что ни к чему хорошему это бы не привело, достаточно взглянуть на наших ближайших соседей. Магнитного поля нет ни у Венеры, ни у Марса. Несмотря на то что по своему строению они очень похожи на Землю, из-за небольших отличий в процессе формирования они лишились своих защитных магнитных полей.
Магнитное поле нашей планеты создается расплавленным железным внешним ядром, которое остается горячим благодаря радиоактивным элементам и остаточному теплу, выделявшемуся при столкновениях в процессе формирования Земли. При движении этого электропроводящего металла появляется ток, который создает магнитное поле, превращая планету в гигантский стержневой магнит. Движение расплавленного ядра обусловлено вращением нашей планеты и потоками тепла, циркулирующими между ядром и поверхностью. Вторые возникают в результате тектонической активности плит Земли. При перемещении гигантских плит коры горячая мантия обнажается и плавит старую кору. При этом высвобождается энергия, которая заставляет охлаждаться внешний слой. Из-за разницы температур ядра и поверхности возникают мощные конвекционные потоки, циркуляция которых напоминает циркуляцию тепла в гигантской батарее отопления: теплая жидкость поднимается вверх, а более холодная опускается вниз, где снова нагревается. Это постоянное движение в недрах Земли придает импульс расплавленному ядру и нашему магнитному полю.
В отличие от Земли, где эта система работает исключительно эффективно, ни Венера, ни Марс не смогли обзавестись ничем подобным. На этих планетах не наблюдается никакой тектонической активности. Из-за скрывающих поверхность толстых облаков и слишком высокой температуры продолжительные исследования с помощью спускаемых аппаратов на Венере затруднены, что делает изучение эволюции этой планеты непростой задачей. По современным представлениям, отсутствие тектонической активности на Венере связано с чрезмерно высокой температурой поверхности. В условиях высоких температур кора планеты превратилась в кашеобразную смесь, которая быстро заполняет трещины, препятствуя образованию плит. В отсутствие воды на адски горячей поверхности мантия Венеры лишилась еще одного фактора подвижности. К тому же планета вращается настолько медленно, что венерианский день длится дольше венерианского года: чтобы совершить один оборот вокруг оси, Венере требуется 243 дня, тогда как ее период обращения вокруг Солнца составляет 225 дней. Это означает, что фактически планета вращается в направлении, противоположном направлению вращения Земли.
Из-за небольшой скорости вращения планеты и отсутствия мощных конвекционных потоков, создаваемых тектонической активностью плит, ядро Венеры также вращается медленнее, чем нужно для образования магнитного поля. Этой скрытой облаками планете остается довольствоваться лишь очень слабым полем на самом верху. Под действием ультрафиолетового излучения Солнца атомы в верхней части венерианской атмосферы теряют электроны, в результате чего образуется слой электрически заряженных частиц, называемый ионосферой планеты. Даже в отсутствие создаваемого ядром магнитного поля эти частицы способны отводить заряженные частицы солнечного ветра, создавая слабый ток и слабое магнитное поле. Поэтому на Венере можно наблюдать свечение, похожее на северное или южное сияние на Земле. Правда, оно в 40 раз слабее.
На Марсе все наоборот: там слишком холодно. Часть марсианской коры сильно намагничена, что указывает на то, что в прошлом у планеты должно было быть магнитное поле. Это поле намагнитило горные породы, а потом исчезло. Все дело в быстром охлаждении Красной планеты. Из-за скромного размера у Марса большая площадь поверхности по сравнению с его объемом. Как раскинутая на сушилке для белья простыня, эта обширная поверхность пропускает через себя тепло из недр планеты намного быстрее, чем это происходит на Земле. Когда ядро Марса остыло, конвекционный поток между мантией и ядром иссяк. Вся тектоническая активность замерла, а магнитное поле исчезло полностью.
Окончательно судьбу магнитного поля планеты, скорее всего, определило столкновение с крупным небесным телом, произошедшее более 4 млрд лет назад. Удар, который пришлось пережить планете всего через несколько сотен миллионов лет после рождения, был такой силы, что его следствием стала выраженная дихотомия двух полушарий марсианской коры. Поверхность северного полушария планеты в среднем на 5,5 км ниже поверхности южного полушария, а кора на 26 км тоньше. При столь масштабном столкновении на оказавшейся под ударом северной стороне должно было выделиться огромное количество тепла. Вызванный этим перепад температур мог нарушить конвекцию в мантии планеты и ослабить магнитное поле. В результате резкого повышения температуры в месте удара горные породы в прилегающей к нему области должны были размагнититься, что объясняет, почему признаки магнетизма наблюдаются главным образом в южной части планеты.
Независимо от подробностей их эволюции, ни у Венеры, ни у Марса сейчас нет магнитного поля, которое бы закрывало всю поверхность этих планет. Благодаря данным двух космических зондов мы не понаслышке знаем, к каким печальным последствиям приводит отсутствие щита в виде магнитного поля.
19 декабря 2006 г. на Солнце произошел относительно небольшой корональный выброс. Четыре дня спустя брызги солнечного вещества добрались до Венеры. Свидетелем этого стал космический аппарат Европейского космического агентства «Венера-экспресс», запущенный на орбиту планеты для изучения ее атмосферы. Несмотря на незначительное количество солнечного вещества и небольшую скорость, в результате коронального выброса незащищенная атмосфера Венеры лишилась внушительного количества кислорода. Также аппарат «Венера-экспресс» зафиксировал потерю водорода и кислорода — последних остатков морей на Венере — в результате воздействия солнечного ветра.
Некоторое время спустя мы смогли наблюдать последствия аналогичных явлений на Марсе благодаря космическому аппарату NASA, запущенному к нашему ближайшему соседу с той же целью, что и «Венера-экспресс» к Венере. 8 марта 2015 г. аппарат MAVEN наблюдал столкновение с Марсом солнечного вещества после намного более мощного коронального выброса. Объем утраченной Красной планетой атмосферы был в 10 раз больше того, который потеряла Венера. Постоянное взаимодействие с солнечным ветром также истощает марсианскую атмосферу, выдувая с маленькой планеты около 100 г газов каждую секунду.
В прошлом последствия аналогичных явлений должны были ощущаться на Марсе и Венере куда сильнее, чем сейчас. Молодое Солнце было намного активнее той спокойной звезды, которую мы можем наблюдать. Так что и вещества в окружающее пространство оно должно было выбрасывать намного больше. Следы жидкой воды на Марсе указывают на то, что когда-то его окружала толстая атмосфера, которая обеспечивала достаточно высокую температуру на поверхности. С потерей магнитного поля Марс лишился и газового покрова, превратившись в непригодный для жизни мир.
Таким образом, скорее всего, наличие магнитного щита является одним из условий обитаемости поверхности любой экзопланеты. Хотя в настоящее время у нас нет методов обнаружения магнитного поля, этот фактор стоит учитывать, объявляя очередную новую планету «похожей на Землю».
Мы прошли долгий путь с момента открытия первых горячих юпитеров в 1990-е гг. Сейчас мы находим миры, которые походят на Землю размером и обращаются в пределах зоны умеренных температур. Но достаточно ли они похожи на Землю, чтобы мы могли назвать их «Землями 2.0»?
Назад: Глава 11. Блуждающие планеты
Дальше: Глава 13. Поиски второй Земли