Книга: Фабрика планет. Экзопланеты и поиски второй Земли
Назад: Планета без атмосферы
Дальше: Самая первая экзопланета

Глава 8. Миры вокруг мертвых звезд

Бывает, что человек, не получивший Нобелевскую премию, становится более известен, чем если бы он ее получил. Пожалуй, самый яркий пример — астрофизик Джоселин Белл Бернелл. Лето 1967 г. она провела за очень необычным занятием: вместе с несколькими другими исследователями Джоселин занималась монтажом огромного радиотелескопа из 2048 радиоантенн на поле размером с 57 теннисных кортов. Белл Бернелл была аспирантом Кембриджского университета и планировала использовать эту установку в качестве источника данных для своей диссертации. В итоге молодая исследовательница не просто написала диссертацию, но совершила открытие, сделавшее ее одной из самых заметных фигур в мире астрофизики.
Анализируя получаемые с телескопа данные, Белл Бернелл обратила внимание на необычный сигнал. Он представлял собой радиоимпульсы, которые повторялись ровно через 1,337 секунды. Повторялись они с такой феноменальной точностью, что в какой-то момент у Белл Бернелл и ее научного руководителя Энтони Хьюиша даже возникла мысль о возможной связи с внеземной жизнью. Регулярность пульсации была едва ли не точнее атомных часов, что, казалось, указывало на искусственное происхождение ее источника, на стоящую за ним развитую внеземную цивилизацию. Для обозначения неведомого объекта Белл Бернелл и Хьюиш использовали аббревиатуру LGM-1, составленную по первым буквам словосочетания Little Green Men, «маленькие зеленые человечки».
Вскоре Белл Бернелл обнаружила точно такой же сигнал, поступавший с другого участка неба. От идеи о маленьких зеленых человечках пришлось отказаться. Расстояние между источниками сигнала было так велико, что они просто не могли быть частью одной цивилизации, тогда как полное совпадение характера сигналов исключало предположение о двух абсолютно разных формах жизни. Впоследствии Белл Бернелл рассказала, что испытала чувство облегчения, когда пришла к выводу об ошибочности идеи о маленьких зеленых человечках. Как раз тогда подходил к концу срок ее аспирантуры — не самое подходящее время для размышлений об инопланетной жизни. Но что тогда это было? Какой объект мог соревноваться в точности с атомными часами? Оказалось, что это была мертвая звезда.
Любая звезда постоянно стремится сжаться под действием собственной гравитации, но этому препятствует выделение тепла в результате горения вещества в ее недрах. Поглощая эту энергию, атомы, из которых состоит звезда, переходят в возбужденное состояние и начинают сопротивляться коллапсу. Применительно к звездам термин «горение» означает не химическое горение, знакомое нам всем по кострам в турпоходах, а слияние легких атомов в более тяжелые. Этот процесс называют термоядерным синтезом.
Благодаря меньшей силе отталкивания положительных зарядов ядер легкие атомы более склонны к синтезу, чем тяжелые. Вот почему в звездах начинается слияние атомов водорода в гелий. Чтобы эта реакция состоялась, она должна протекать при умопомрачительно высоких температурах, способных обеспечить такую скорость столкновения атомов, которой будет достаточно для преодоления электрического отталкивания. Температуры солнечного ядра, достигающей 15 млн градусов, для этого достаточно. Из-за большей атомной массы образовавшийся гелий опускается к центру звезды, оставляя водороду пространство для продолжения синтеза во внешней оболочке. Как только у звезды заканчивается топливо, верх одерживает гравитация. Дальнейшая судьба звезды зависит от ее массы.
В случае со звездой, похожей на наше Солнце, тяжелое гелиевое ядро сжимается под действием собственной более мощной гравитации. Температура повышается, и звезда начинает раздуваться в размерах. По мере расширения внешние слои остывают, испуская свет красного оттенка. Поэтому такую звезду называют красным гигантом. В итоге температура в ядре достигает 100 млн градусов, и начинается термоядерная реакция превращения гелия в углерод. Более тяжелый углерод опускается ниже гелия, образуя еще более плотное ядро. Массы звезды вроде нашего Солнца недостаточно, чтобы обеспечить повышение температуры при сжатии углеродного ядра до значения, при котором начнется слияние ядер углерода. Вместо этого под воздействием тепловой энергии ядра внешние слои умирающей звезды рассеиваются, оно теряет половину своей массы и сжимается до размеров Земли. Такую звезду называют белым карликом.
Финальная стадия эволюции звезды массой более 8 масс Солнца (или солнечных масс) протекает гораздо драматичнее. Благодаря большей массе степень сжатия ядра достигает значений, обеспечивающих горение углерода, а затем и более тяжелых элементов. Дойдя до железа, реакции синтеза прекращаются, так как слияние ядер атомов железа сопровождается не выделением энергии, а ее поглощением. То есть звезда не получает никакого нового импульса от горения. Не имея возможности продолжать генерировать энергию, звезда перестает сопротивляться коллапсу — в результате гравитация побеждает, и звезда схлопывается. Образовавшаяся ударная волна вызывает термоядерный синтез практически всех элементов, и звезда взрывается. Такой взрыв называют вспышкой сверхновой.
При достаточной массе оставшегося после взрыва сверхновой ядра гравитация превращается в неудержимую силу, которая заставляет остатки звезды коллапсировать до тех пор, пока из ловушки гравитационного притяжения будет не в состоянии вырваться даже свет. Так образуется черная дыра. Если после взрыва остается ядро массой 1,4–3 солнечных массы, процесс не может завершиться образованием черной дыры. Вместо этого под действием гравитации ядро сжимается так сильно, что электроны в атомах соединяются с протонами, образуя нейтроны. В результате появляется горячая головня без оболочки — нейтронная звезда — самый плотный класс звезд во Вселенной.
Если диаметр этих трупов звезд уменьшается с миллионов километров до примерно 10–20 км, то их масса превышает массу Солнца более чем на 40%. От поверхности до ядра они состоят из насыщенных нейтронами атомных ядер. При этом доля нейтронов увеличивается с увеличением глубины до тех пор, пока ядерная структура не распадается, превращаясь в подобие супа из нейтронов. На Земле кусочек нейтронной звезды размером с кубик сахара весил бы более 100 млн т — больше, чем все население нашей планеты (правда, нам пришлось бы сильно потесниться).
Несмотря на уменьшение радиуса нейтронной звезды, в результате которого она сжимается до размеров небольшого городка, количество ее вращения остается прежним. Результат можно сравнить с тем, что будет происходить, если вы раскрутитесь в офисном кресле и начнете подтягивать руки к груди, продолжая кружиться. В обоих случаях скорость вращения возрастет. В случае нейтронной звезды, подвергшейся колоссальному сжатию, время обращения уменьшается до считанных секунд.
Хотя нейтронная звезда состоит преимущественно из нейтральных нейтронов, в ней остается около 10% заряженных протонов и электронов, которые обеспечивают сохранение ее магнитного поля. В результате коллапса поле сжимается, становясь в триллионы раз сильнее поля Земли. Магнитное поле вспарывает поверхность вращающейся звезды и вытягивает оставшиеся протоны и электроны из коры, направляя их вдоль силовых линий к магнитным полюсам. Лавируя при движении по силовым линиям, заряженные частицы испускают радиоволны вместе с мощным рентгеновским излучением, гамма-излучением и видимым светом. Там, где силовые линии магнитного поля сходятся на полюсах, излучение собирается в пучки, которые распространяются по космосу вместе с ветром из заряженных частиц.
Северный и южный полюсы магнитного поля могут не совпадать с осью вращения звезды. Именно так обстоит дело на Земле: ось магнитного поля нашей планеты наклонена на 11 градусов к ее оси вращения. Из-за этого смещения пучки излучения нейтронной звезды разлетаются в разные стороны от звезды, словно луч света от вращающегося маяка. Если траектория движения пучка проходит через Землю, при каждом обороте нейтронной звезды до нашей планеты добираются регулярные импульсы излучения. Именно эти импульсы и обнаружила Белл Бернелл, прозвав их «маленькими зелеными человечками».
Беря интервью у Белл Бернелл в 1968 г., научный корреспондент The Daily Telegraph поинтересовался у исследовательницы, как следует называть эти странные мерцающие объекты. Сам он предложил называть их пульсарами по аналогии с квазарами — теми яркими, но не пульсирующими источниками радиоизлучения, которые Белл Бернелл собиралась изучать с помощью выстроенного ею телескопа. Этот вариант вошел в научный обиход и стал повсеместно использоваться в качестве названия нового типа астрономических объектов.
Выяснив, что источником импульсов является быстро вращающийся пульсар, Белл Бернелл и Хьюиш решили переименовать загадочный объект, заменив аббревиатуру LGM-1 на CP 1919, где буквы CP — сокращение от Cambridge Pulsar («кембриджский пульсар»), а цифры 1919 указывают на угловое расстояние от нулевой точки на небесном экваторе в восточном направлении. Позже она получила свое нынешнее официальное обозначение — PSR B1919+21, где PSR означает пульсирующий источник радиоизлучения (Pulsating Source of Radio), дополнительные цифры 21 указывают на то, что склонение объекта к северу от небесного экватора составляет 21 градус, а буква B сообщает о формате записи координат.
В 1974 г. Хьюиш получил Нобелевскую премию по физике за открытие пульсаров. Тот факт, что вклад Белл Бернелл в это открытие не получил признания, долгое время оставался предметом дискуссии, хотя сама Белл Бернелл приняла его с достоинством, так прокомментировав решение: «Полагаю, не получив Нобелевскую премию, я получила даже больше!» За свою карьеру она была удостоена множества других престижных премий и наград. В Великобритании она занимала должность президента Королевского астрономического общества и президента Института физики. Тем временем изучение пульсаров приводило к результатам, которые выглядели все более и более странно.
В конце 1970-х гг. всего лишь в нескольких градусах от открытого Белл Бернелл и Хьюишем пульсара был обнаружен еще один радиоисточник. Учитывая его невероятно компактные размеры, исследователи решили, что это новый пульсар. Однако все попытки зафиксировать характерное для пульсаров мерцание ни к чему не привели. Казалось, объект испускал не импульсный сигнал, похожий на вспышки маяка, а непрерывный поток радиоволн.
Подозревая, что при огромной скорости вращения пульсара могут возникнуть трудности с фиксацией его мерцания, в марте 1982 г. исследователи предприняли еще одну попытку. На этот раз их мишенью стали пульсары с периодами вращения до 4 миллисекунд (то есть 250 оборотов в секунду). Самый быстрый из известных к тому времени пульсаров находился в Крабовидной туманности. Его период вращения составлял 33 миллисекунды. Таким образом, результатом новых поисков должны были стать объекты, вращающиеся в 10 раз быстрее. Однако вплоть до осени никаких признаков характерных для пульсаров мерцаний обнаружено так и не было.
Наконец появилось сообщение об импульсном сигнале, зарегистрированном радиотелескопом в Аресибо на острове Пуэрто-Рико. 305-метровая тарелка этой обсерватории пользовалась большой популярностью у кинематографистов: именно с помощью нее искали внеземную жизнь герои экранизации романа Карла Сагана «Контакт»; и она же была эффектно взорвана в финале одной из серий бондианы «Золотой глаз». При сканировании неба с частотой в полмиллисекунды в 1982 г. огромной антенне обсерватории все-таки удалось обнаружить повторяющие импульсы, исходившие от пульсара-рекордсмена. Период вращения нового объекта составлял 1,558 миллисекунды, что соответствует ни много ни мало 642 оборотам в секунду. Это было в 20 раз быстрее пульсара в Крабовой туманности. Так был поставлен рекорд скорости вращения пульсара, который продержался еще четверть столетия.
Хотя открытие миллисекундного пульсара позволило ответить на вопрос о необычном источнике радиоизлучения, оно породило целый ворох новых проблем. Поскольку пульсары непрерывно испускают энергию в форме радиоволн и прочих видов излучения, с течением времени они постепенно замедляются. Поэтому молодые пульсары вращаются быстрее старых. Из этого должно было следовать, что, раз миллисекундный пульсар был самым быстро вращающимся из всех когда-либо наблюдавшихся, он должен был быть совсем молодым. Но данные говорили об обратном.
Если бы пульсар был обнаружен вскоре после рождения, вокруг него должны были бы присутствовать признаки взрыва гигантской сверхновой звезды, в результате которого она должна была бы сбросить свои внешние слои. Выброшенный умирающей звездой газ — так называемый остаток сверхновой — обычно виден в течение более чем 10 000 лет. Например, Крабовидная туманность — остаток от взрыва сверхновой звезды, превратившейся в пульсар. По оценкам, ее возраст составляет 960 лет. Новый миллисекундный пульсар должен быть намного моложе, но никаких признаков газового остатка вокруг него нет.
Еще более странным было то, что пульсар замедлялся недостаточно быстро. Согласно моделям изменения скорости пульсара, молодые пульсары должны терять скорость стремительно, а такой заводной волчок, как миллисекундный пульсар, должен затухать и того быстрее — всего лишь за несколько лет. Измерения скорости замедления пульсара показали, что она была намного ниже ожидаемой, а возраст объекта составляет 230 млн лет. То есть он был намного старше всех известных на тот момент пульсаров. Как мог пульсар, испускающий энергию в космос, быть одновременно и самым быстрым и самым старым? Как выяснилось впоследствии, все дело было в том, что он поглотил своего компаньона.
История миллисекундных пульсаров начинается с пары звезд, обращающихся вокруг общего центра масс в составе двойной системы. Удерживаемые вместе взаимным тяготением, эти звезды не похожи друг на друга: одна из них намного массивнее другой. Большой размер не прибавляет здоровья звезде, так как дополнительная масса ускоряет процесс сжигания запасов ядерного топлива. Поэтому более массивный из двух компонентов первым достигает конца обычного для звезд жизненного цикла и взрывается как сверхновая. Когда совсем рядом происходит взрыв такой колоссальной мощности, меньшая звезда рискует быть разорванной на кусочки. Но если ей все-таки удается выжить, она оказывается в паре с нейтронной звездой.
Несмотря на крошечный размер, нейтронная звезда остается невероятно тяжелой. Поэтому вторая звезда в системе продолжает испытывать на себе ее гравитационное притяжение, и обе они по-прежнему обращаются вокруг общего центра масс. Если магнитные полюсы нейтронной звезды оказываются направлены в сторону Земли, пучки ее радиоизлучения попадают по нашей планете и регистрируются как пульсар. Со временем пульсар начинает замедляться. Приблизительно за 100 000 лет радиосигнал пульсара ослабевает настолько, что обнаружить его уже невозможно. И пульсар замолкает. Однако масса пульсара при замедлении не меняется, так что ее звезда-компаньон продолжает движение по той же орбите. Но теперь уже она сама также приближается к концу своего жизненного пути.
Вокруг каждой из звезд есть участок пространства, в котором ее притяжение преобладает над притяжением звезды-компаньона — полость Роша. По сути, это понятие, схожее с понятием сферы Хилла, — для тех случаев, когда массы рассматриваемых объектов сопоставимы. По форме полости Роша похожи на слезинки, которые сходятся в одной точке своими узкими концами, а не на сферы вокруг звезд. В точке схождения гравитационные силы двух звезд уравновешивают друг друга подобно перемычке между двумя горными долинами. Достаточно сделать один шаг по направлению к одной из звезд — и ее гравитация притянет вас к ней. Сдвиньтесь в обратном направлении — и теперь уже ее компаньон затащит вас к себе.
Когда в меньшей из двух звезд заканчивается водород, она раздувается и превращается в красный гигант. Радиус звезды становится настолько большим, что она выходит за пределы своей полости Роша и втягивается в область притяжения нейтронной звезды. Этот выход за границы повторяет механизм образования хтонических суперземель из горячих юпитеров, описанный в шестой главе.
Как только внешние слои красного гиганта наваливаются на нейтронную звезду, она получает толчок, который приводит к еще большему ускорению ее вращения. Под влиянием дальнейшего притока вещества красного гиганта-компаньона скорость вращения нейтронной звезды вырастает до невероятных значений, измеряемых миллисекундами. Соприкасаясь с поверхностью нейтронной звезды, вещество нагревается до колоссальных температур, достигающих 10 млн градусов. Такое фантастически горячее вещество испускает не инфракрасное, а более высокоэнергетическое рентгеновское излучение. Для обозначения источников такого излучения, фиксируемого на Земле, используют промежуточный термин маломассивные рентгеновские двойные системы.
В конце концов нейтронная звезда полностью вытягивает внешние слои красного гиганта, который превращается в белый карлик, обращающийся вокруг миллисекундного пульсара. Чтобы обратить внимание на главную особенность миллисекундных пульсаров, а именно увеличение скорости вращения в результате воздействия внешнего объекта, их называют раскрученными пульсарами. Точность, с которой они испускают импульсы, еще выше, чем у обычных пульсаров. Степень точности настолько велика, что на нее может повлиять даже крошечный объект. И последствия этого влияния можно наблюдать.
Назад: Планета без атмосферы
Дальше: Самая первая экзопланета