Книга: Фабрика планет. Экзопланеты и поиски второй Земли
Назад: Загадка без разгадки
Дальше: Рецепты из горных пород

Глава 7. Вода, алмазы, лава — неведомые рецепты планетообразования

После известия об открытии 51 Пегаса b астрономам понадобилось около двух лет, чтобы научиться уверенно вычленять в данных о движении звезды колебания, указывающие на присутствие планеты. В результате им удалось обнаружить еще шесть экзопланет. Все они, как и 51 Пегаса b, были горячими юпитерами с огромной массой и близкими к звезде орбитами. Поэтому их и было легче всего найти.
О последних трех стало известно в 1997 году. Среди них была HR 3522b — планета чуть меньше Юпитера с периодом обращения 14 суток. Авторы журнальной публикации о находке использовали обозначение, которое она получила при включении в Йельский каталог ярких звезд (HR). Впоследствии за ней закрепилось название «55 Рака b», указывающее на то, что это была первая планета, найденная рядом с 55-й звездой в созвездии Рак. Новая планета была примечательна уже тем, что была одной из первых известных нам планет за пределами Солнечной системы. Но было еще кое-что, выделявшее из общего ряда. Так случилось, что 55 Рака b стала первой планетой, обнаруженной в системе, которая выходила за рамки даже самых смелых наших фантазий об инопланетных мирах.
В течение 10 лет с открытия 55 Рака b на орбитах вокруг той же самой звезды было обнаружено еще четыре планеты. Таким образом, 55 Рака стала первой известной нам звездой с пятью планетами и одной из трех звезд, рядом с которыми были найдены первые суперземли с такой же массой, как у Нептуна. Масса 55 Рака e равна приблизительно 8 массам Земли (48% массы Нептуна). У нее исключительно короткий период обращения — всего лишь 18 часов, а расстояние от нее до звезды составляет 5% расстояния от Меркурия до Солнца.
В ходе наблюдений за 55 Рака выяснилось, что она является частью двойной системы. Другая звезда этой системы — менее массивный красный карлик, находящийся на расстоянии более 1000 а.е. Несмотря на маленький размер и удаленность, которые не позволяют ему влиять на планеты, формирующиеся вокруг более крупной сестры, красный карлик, судя по всему, является источником постоянного притяжения, ставя всю планетную систему с ног на голову.
Производимый им эффект аналогичен эффекту Козаи — Лидова, с которым мы познакомились в главе 5, когда рассматривали его роль в перемещении горячих юпитеров к звездам за счет взаимодействия со звездой-компаньоном. В системе 55 Рака гравитационные притяжения соседних миров удерживают орбиты планет вместе таким образом, что вся система переворачивается одновременно, как при выступлении команды по синхронному плаванию. Если бы мы могли взглянуть на небо с поверхности этих планет, из-за совершаемого всей планетной системой кульбита нам бы показалось, что созвездия медленно движутся. Правда, чтобы заметить это, нам пришлось бы задержаться там надолго: для полного переворота требуется около 30 млн лет.
Но самое необычное в этой системе — свойства присутствующей в ней суперземли 55 Рака e. Как и остальные планеты, 55 Рака e была обнаружена методом измерения колебаний лучевой скорости звезды. В 2011 г. также удалось зафиксировать прохождение суперземли по диску звезды с помощью космического телескопа NASA «Спитцер». И вот еще одно «впервые» для этой планетной системы: звезду 55 Рака можно наблюдать невооруженным глазом; а значит, прохождение ближайшей к ней планеты стало первым зафиксированным случаем прохождения по диску звезды, которую можно увидеть без телескопа. Проведенные измерения радиуса и угла наклона орбиты позволили определить массу планеты. Выяснилось, что эта суперземля на 20% больше Земли при радиусе, равном 2,2 радиуса нашей планеты. В очередной раз исследователи получили результат, который казался совершенно абсурдным.
Вычислить плотность 55 Рака e при наличии массы и радиуса не составило труда — она равна 4 г/см3. Учитывая радиус, следовало бы предположить, что планета является мини-нептуном. Но полученное значение плотности было слишком большим для газового мира с обширной водородно-гелиевой атмосферой. Плотность мини-нептуна с массой, равной 8 массам Земли, не должна превышать 1,3 г/см3. С другой стороны, при такой массе планета с твердой внутренней частью, как у Земли, также не может иметь плотность 4 г/см3. Хотя плотность Земли в среднем приближается к 5,5 г/см3, на планете с массой, которая в 8 раз больше, горные породы должны сжаться до значения свыше 8,5 г/см3. Таким образом, 55 Рака e была слишком мала для газового мира и слишком велика для каменистого. Чем же она была на самом деле?
Если эта суперземля является планетой с твердой оболочкой, она должна состоять из тех же элементов, что и планеты земной группы. То есть основными ее составляющими должны быть железо и силикаты. Минимальный возможный размер при такой массе будет иметь планета, в составе которой не будет ничего, кроме железа. В планете максимального размера железа не будет совсем — его заменят более легкие силикатные породы. Обе крайности маловероятны. Учитывая, что элементы планет земного типа конденсируются в твердые породы практически при одной и той же температуре, все они принимают участие в формировании планеты. Например, 30% массы Меркурия — нашей самой горячей и богатой железом планеты — до сих пор приходится на мантию из силикатных пород. Но, даже если допустить возможность реализации самых маловероятных сценариев, все равно результат будет меньше, чем у 55 Рака e.
А что, если отказаться от деления на землеподобные и газовые планеты и остановиться на идее гибридного мира — может быть, тогда удастся увязать радиус 55 Рака e с ее массой? У такой планеты должно быть твердое ядро значительно большего размера, чем у Земли. Также она должна быть способна удержать первичную толстую водородно-гелиевую атмосферу. Учитывая малый вес газов, даже при массе атмосферы в 0,1% массы планеты мы можем получить мир с плотностью, соответствующей плотности 55 Рака e.
Гипотеза о 55 Рака e как о гибридной планете могла бы стать идеальным ответом на вопрос о ее природе, если бы не невероятно короткий период обращения — всего 18 часов. Суперземля, на которой год длится меньше земных суток, обращается вокруг звезды на расстоянии всего 0,016 а.е. Из-за близости к раскаленному ядерному реактору средняя температура на этой планете, как предполагают, составляет около 2000 °C. В условиях адской жары массы планеты вряд ли хватит, чтобы не дать улетучиться легкой водородно-гелиевой атмосфере. Она выгорит за пару миллионов лет, что не так уж и много по меркам планетной эволюции. Поэтому нам вряд ли удастся увидеть 55 Рака e в тот период, когда она еще была окружена первичной газовой оболочкой.
Итак, об атмосфере, как у Нептуна, не может быть и речи. Вопрос: какой другой элемент рыхлее твердых пород, но при этом обладает достаточной массой, чтобы планета могла удержать его? Ответ: вода, вернее, крайне необычное состояние воды.
Если допустить, что изначально 55 Рака e сформировалась за снеговой линией, в момент рождения в ее составе должно было быть большое количество льда. После того как в процессе миграции к звезде ее атмосферу покинули водород и гелий, вокруг твердого ядра планеты должна была остаться оболочка из водяных паров толщиной в тысячи километров. Идея о том, что планета, обращающаяся по орбите в непосредственной близости от горнила своей звезды, может быть покрыта водой, кажется более чем странной. Разумеется, вода на такой планете не может иметь ничего общего с той прохладной жидкостью, которая течет из крана на нашей кухне. Имеющаяся на 55 Рака e вода должна пребывать в крайне редком состоянии, называемом сверхкритическим.
Переход в состояние сверхкритической жидкости происходит при очень высоких значениях температуры и давления. Например, ракетное топливо переходит в сверхкритическую фазу в момент выброса из сопел стартующего космического корабля. В такой форме граница между жидкостями и газами размывается, и вещество оказывается где-то между этими двумя состояниями. На планете с подобными характеристиками невозможно понять, где проходит граница между океанами и небом. Если бы мы решили отправиться туда и сумели выжить, мы бы оказались в подвешенном состоянии где-то в толще сверхкритического тумана.
Раскаленный мир с годом продолжительностью 18 часов в оболочке из жидкообразного газа, обращающийся по орбите, которая медленно опрокидывается, — можно ли придумать что-то более странное? Но есть еще одно, даже более странное, объяснение состава 55 Рака e: сверхкритичная вода тут ни при чем — возможно, эта суперземля полна алмазов.
Несмотря на сходство в размерах, по составу звезда 55 Рака не похожа на наше Солнце: полагают, что она богата углеродом. Звезды вплоть до преклонного возраста состоят главным образом из водорода и гелия с микроскопическими вкраплениями других элементов — углерода, кислорода, магния, кремния и железа. Углерода в составе Солнца примерно вдвое меньше, чем кислорода. Эту особенность, как правило, выражают в виде соотношения между элементами: C/O = 0,5. Проведенные в 2010 г. наблюдения показали, что, в отличие от Солнца, углерода в составе 55 Рака немного больше, чем кислорода: C/O = 1,12. Различия в составе звезд имеют большое значение, поскольку указывают на различия в составе протопланетных дисков, материал которых должен был быть таким же, как у звезд. Большая доля углерода в составе звезды может указывать на то, что участвовавшие в формировании планет частицы пыли также были богаты углеродом. Миры из такого материала могут сильно отличаться от планет земной группы.
Несмотря на большую роль углерода в эволюции биологической жизни, на Земле его на удивление мало. Девяносто пять процентов массы Земли приходятся на железо, кремний, кислород и магний. Большая часть железа заключена в земном ядре. Остальные элементы образуют силикатную мантию и кору. Углерод выступает в качестве второстепенного компонента: на него приходится менее 0,2% массы Земли. Столь мизерная доля объясняется тем, что конденсация углерода в твердые частицы происходила в холодной внешней области Солнечной системе. В области формирования миров земной группы он оставался в форме пара, и в момент, когда Солнце заставило рассеяться газовый диск, его оттуда просто выдуло. Как и в случае с океанами, о возможных источниках происхождения которых мы говорили в главе 4, в начале существования Земли углерода на ней не было. Небольшое его количество было занесено на нашу планету метеоритами из внешней области Солнечной системы.
При увеличении доли углерода в протопланетном диске до величины, сопоставимой с долей атомов кислорода (или даже превышающей ее), свойства твердого строительного материала в системе меняются. Доминирование атомов углерода приводит к тому, что кремний начинает связываться не с кислородом, а с углеродом, образуя не силикат, а твердый карбид кремния. Поэтому в составе планет, сформированных из такой пыли, будут преобладать не соединения кислорода, а углерод и карбид кремния.
Если недра 55 Рака e имеют именно такой богатый углеродом состав, необходимость в обеспечивающей объем оболочке из более легкого материала отпадает. Состоящая из железа, углерода и кремния планета с массой, зафиксированной в ходе наблюдений за 55 Рака e, может иметь как раз тот радиус, который нам нужен. Значит, можно не только отбросить гипотезу о сверхкритичной воде, но и констатировать, что воды на 55 Рака e, возможно, нет совсем.
При обилии углерода в протопланетном диске кислород окажется во власти этого элемента, результатом чего станет формирование токсичного монооксида углерода. Кислорода, из которого при связывании с водородом могла бы образоваться вода, останется совсем немного. Поэтому даже во внешней планетной системе льда из воды может просто не быть. Торренс Джонсон, исследователь из Лаборатории реактивного движения NASA в Пасадене, занимавшийся моделированием процесса образования планетезималей в богатых углеродом системах, как-то с сожалением заметил: «За снеговой линией, возможно, никакого снега и нет».
Отсутствие воды в планетной системе означает, что, даже если бы 55 Рака e находилась на орбите, обеспечивающей более благоприятный климат, из-за обилия углерода на ней бы не было условий для поддержания жизни в известной нам сейчас форме. Джонатан Лунин из Корнеллского университета, работавший вместе с Джонсоном, прокомментировал это наблюдение не без доли иронии: «Как это ни парадоксально, но когда углерода, главного элемента жизни, становится слишком много, он крадет кислород, необходимый для формирования воды — растворителя, без которого известные нам формы жизни просто немыслимы».
Если оставить в стороне отсутствие воды, какие еще особенности должны быть у углеродной планеты? Скорее всего, ее кора будет состоять из графита — вещества, из которого делают стержни для карандашей. В условиях высокого давления под поверхностью планет образуется алмазная мантия. Значительная часть углерода в мантии Земли также имеет форму алмазов, превращаясь в карбонаты при окислении в условиях более низкого давления в прилегающих к коре слоях. Почему же мы до сих пор не купаемся в бриллиантах? Причина в том, что общее количество углерода исключительно мало — менее 0,2%, в то время как на кислород приходится чуть больше 50%. На богатой углеродом планете алмазов будет столько, что в результате вулканической активности на ее поверхности должны разливаться настоящие реки этих сверкающих драгоценных камней.
Если бы на такой планете могло существовать вещество в жидкой форме, оно также было бы связано с углеродом — например, это могло бы быть море дегтя. Добавим также высокий уровень содержания моноксида и диоксида углерода в атмосфере и постоянно висящую в воздухе пелену смога из-за углеродных дождей. И это еще оптимистичный сценарий. Ведь на такой планете может вовсе не быть атмосферы.
Под поверхностью Земли безостановочно кипит работа. Кора планеты разделена на застывшие участки, которые называют тектоническими плитами. Под ними — мантия. Несмотря на кажущуюся монолитность, в масштабе геологического времени, измеряемого миллионами лет, мантия на самом деле движется как жидкость с чрезвычайно высокой вязкостью. Выступая в качестве своего рода конвейерной ленты, она заставляет перемещаться тектонические плиты. Когда две плиты расходятся, находящаяся под ними мантия выходит на поверхность и остывает, образуя новый участок коры. Там, где плиты соскальзывают друг под друга, старые более толстые участки коры начинают плавиться, в результате чего в таких переходных зонах часто образуются вулканы. Перемещения коры и мантии обеспечивают циркуляцию атмосферы и питательных веществ в пределах планеты, а также способствуют генерации магнитного поля. Но стоит заменить нашу мантию на алмазную, как эта важнейшая активность будет существенно затруднена.
Алмаз имеет очень высокую вязкость, то есть жидкостное трение, определяющее скорость течения материалов. Вязкость сиропа больше, чем вязкость воды, а вязкость алмазной мантии приблизительно в 5 раз больше вязкости силикатного слоя. На планете, где доля углерода превышает 3%, сдвинуть мантию настолько трудно, что рассчитывать на тектонические сдвиги не приходится — разве что на скрежет.
Из-за отсутствия тектонических процессов поверхность планеты превратится в неподвижный панцирь, что серьезно затруднит образование вулканов. На первый взгляд, в сокращении числа гор, которые могут взорваться в любой момент, нет ничего плохого. Но на самом деле планета лишается важного фактора формирования атмосферы. В итоге мы получаем инертное тело с горой драгоценных камней, но без воздуха.
Присутствие графита в коре также может способствовать чрезмерному нагреву поверхности планеты. Даже на такой же орбите, как у Земли, графит из-за своего темного цвета не сможет отражать солнечный свет — он будет его поглощать. Подобно огромному черному пикапу на открытой парковке где-нибудь во Флориде, планета будет нагреваться намного сильнее зелено-голубой Земли. А значит, даже если ей удастся каким-то образом заполучить океаны, удержать воду в жидкой форме на поверхности будет очень трудно.
Таким образом, даже соблазн перед красотой драгоценных камней вряд ли способен сделать углеродный мир привлекательным местом для жизни.
Не успела планета 55 Рака e официально прослыть углеродным адом, как само существование источника всех ее бед было поставлено под сомнение. Проблема в том, что измерить соотношение C/O (углерода к кислороду) не так-то просто. Дело в том, что вычисление содержания кислорода в звезде представляет собой особо сложную задачу.
Звезда состоит из невероятно горячего плотного ядра, окруженного чуть менее горячей атмосферой из разреженного газа. Температура солнечного ядра может достигать 15 000 000 °C и более, тогда как температура внешнего слоя звезды составляет 5500 °C. Эту внешнюю атмосферу звезды называют фотосферой. Температура фотосферы все еще достаточно высока, но уже не настолько, чтобы атомы не могли удерживать свои электроны. Эти электроны выстраиваются на лестнице неравноотстоящих энергетических уровней. Подвергаясь исходящему от ядра излучению, атомы поглощают длины волн с энергией, достаточной для перехода внешнего электрона на одну из более высоких энергетических ступеней. Поглощаемые длины волн зависят от занимаемых электронами энергетических уровней, а значит — от типа атома. Изучив свет звезды и определив, какие длины волн в нем отсутствуют, можно понять, какие атомы входят в ее состав.
Ситуация осложняется, когда два разных атома поглощают практически одни и те же длины волн. В этом случае их трудно отличить друг от друга, что приводит к неопределенности в оценке количества атомов обоих типов. Что касается измерения соотношения C/O для 55 Рака, проблема заключалась в том, что длина волны, обычно получаемая при измерениях для кислорода, была чрезвычайно близка к соответствующему значению для никеля. В 2013 г. был проведен повторный анализ собранных о звезде данных. На этот раз было решено не полагаться на разницу между основными длинами волн для кислорода и никеля, а провести сравнение трех разных длин волн, которые могу поглощать атомы кислорода, и теми, которые поглощают атомы никеля. Исследователи пришли к выводу, что соотношение C/O у данной звезды ниже первоначально полученного значения 1,12, а именно около 0,78. Углерод замещает кислород в соединениях кремния в том случае, если значение C/O в газе протопланетного диска составляет приблизительно 0,8. Таким образом, в вопросе о природе 55 Рака e возникла неопределенность. Чтобы узнать, является ли этот мир углеродным, требовались крайне сложные наблюдения.
Спасти ситуацию и подтвердить гипотезу о жутком углеродном мире могло бы одно обстоятельство, осложняющее общую картину. Хотя в момент рождения звезда и протопланетный диск имеют одинаковые состав атомов, со временем твердые частицы в диске меняются.
Рассматривая в главе 1 процесс образования нашего протопланетного диска, мы отмечали, что материал частиц пыли зависит от температуры. В окрестностях Солнца присутствуют соединения железа и силикаты, которые улетучиваются только при высоких температурах. Летучие молекулы, такие как вода, сохраняют форму газа вплоть до снеговой линии, за которой температура падает. Однако этот переход из газового состояния в твердое не происходит мгновенно. Исходя из возраста падавших на Землю метеоритов можно сделать вывод, что конденсация твердых частиц, из которых формировались наши планеты, не была одномоментным процессом, напротив, она продолжалась в течение 2,5 млн лет. Этого времени достаточно, чтобы в результате изменения условий в протопланетном диске начался процесс формирования богатых углеродом планетезималей.
Когда значение C/O ниже 0,8, углерод сохраняет газообразную форму в значительной части протопланетного диска. Кремний захватывает кислород, в результате чего образуются силикатные частицы, а углерод остается нетронутым. Таким образом, содержание кислорода в газе постоянно снижается, а значение соотношения C/O начинает расти. Поэтому дальнейшее формирование твердых частиц происходит в газе с такой высокой долей углерода, что большинство из них оказываются частицами графита и карбида кремния.
Это означает, что, даже если первоначально значение C/O в газе протопланетного диска не превышает магические 0,8, возможность формирования большого количества твердого углерода в последующем все равно существует. Согласно расчетам, даже такого маленького значения, как C/O = 0,65, достаточно для образования богатых углеродом планетезималей. Так что 55 Рака e вполне может быть углеродным миром. И не она одна.
Судя по значениям C/O в близлежащих к нам звездных системах, у трети звезд, рядом с которыми есть планеты, это соотношение может превышать 0,8. А значит, там могут быть коварные углеродные миры. И даже если из-за сложности оценки содержания кислорода это значение завышено, доля углеродных планет все равно может быть весьма значительной. Рядом с двумя звездами, которые, как показывают измерения, отличаются исключительно высоким значением C/O, были найдены газовые гиганты. HD 189733 располагается на расстоянии 63 световых года от нас в созвездии Лисичка. Газовый гигант рядом с ней — это горячий юпитер с периодом обращения 2,2 суток. HD 108874 находится в 200 световых годах от нас в созвездии Волосы Вероники (Вероника — египетская царица). Эта звезда соседствует с двумя мирами размером с Юпитер, которые находятся на несколько большем удалении от нее: расстояние до HD 108874 b составляет 1 а.е., а до второй звезды — 2,68 а.е. Поскольку все они являются газовыми мирами, ни у одной из этих планет не должно быть твердой оболочки. Однако, будь у них спутники, они вполне могли бы быть углеродными мирами.
Назад: Загадка без разгадки
Дальше: Рецепты из горных пород