Книга: Фабрика планет. Экзопланеты и поиски второй Земли
Назад: Планетная метла
Дальше: Мигрирующая популяция

Ловушка мертвой зоны

«Самое важное открытие с момента обнаружения 51 Пегаса b» — так охарактеризовал найденную в 2011 г. новую планетную систему планетолог Джек Лиссауэр из Исследовательского центра Эймса NASA в Калифорнии.
Находка включала шесть планет, проходящих по диску солнцеподобной звезды Кеплер-11 в созвездии Лебедь на расстоянии около 2000 световых лет от Солнечной системы. Из-за большого количества проходящих планет в одной системе и их близкого расположения, указывающего на самый высокий уровень концентрации планет за все время наблюдения, новость об открытии сразу попала на первые полосы прессы.
Пять из шести планет движутся вокруг Кеплер-11 по орбитам, которые вписываются в орбиту Меркурия, а шестая находится чуть дальше от звезды. Анализ изменения времени наступления транзита планет под влиянием взаимного притяжения позволил измерить их массу. Оказалось, что в этом компактном семействе пять суперземель массой от 2 до 8 масс Земли. Из-за слабого влияния на остальные миры в системе установить массу последней планеты, получившей обозначение Кеплер-11 g, несколько труднее. По приблизительной оценке, она не превышает 25 масс Земли, то есть представляет собой мир размером с Нептун.
Итак, мы имеем дело с планетной системой, где не одна, а целых шесть планет находятся на близких к звезде орбитах и где при этом нет горячего юпитера, который мог бы обеспечить необходимое количество вещества. Каким образом подобная система сформировалась? Еще раз процитируем Лиссауэра: «Мы даже не подозревали, что такие системы могут существовать».
Несмотря на всю необычность обнаруженных вблизи Кеплер-11 планет, у нас есть отличный кандидат на роль процесса, который мог бы обеспечить перемещение каменистых тел к звезде и без горячего юпитера — это сопротивление встречного газового ветра. Когда размер таких тел приближается к 1 м, газовый поток уже не способен увлекать их за собой, то есть они становятся достаточно большими, чтобы самостоятельно определять траекторию своей орбиты. Преодолев давление газа, эти камни начинают двигаться немного быстрее окружающего газа, что приводит к появлению встречного ветра. Во второй главе мы уже говорили о значении этого процесса, в результате которого каменистый материал из окрестностей наших планет устремился внутрь системы, к Солнцу. Но принимал ли он участие в формировании горячих суперземель?
В гипотезе торможения массивных осколков твердых пород труднее всего объяснить, что заставило этот поток строительного материала остановиться, избежав столкновения со звездой. Без участия горячего юпитера, способного удерживать каменистые тела на резонансных орбитах, массовый приток материала из-за встречного ветра должен приводить к его полному сгоранию. Требуется что-то, что могло бы заставить его остановиться и cкопиться в определенной области.
Рассматривая механизмы формирования планет Солнечной системы, мы обращались к явлению потоковой неустойчивости, благодаря которой пелотоны булыжников смогли набрать достаточную массу для преодоления сопротивления газа. Однако нет никаких доказательств того, что формирование больших скоплений камней за счет потоковой неустойчивости должно было неизменно происходить неподалеку от звезды. Каменистый материал вполне мог накапливаться на краю протопланетного диска одновременно с аккрецией всего газа и пыли за его пределами на звезду, но вряд ли бы это помогло объяснить появление системы, состоящей из нескольких суперземель на разных орбитах. Куда большую гибкость в данном случае дает вариант объяснения с использованием магнитного поля.
Магнитные поля существуют повсюду во Вселенной. Если взять, к примеру, атом и убрать из него электрон, то он получит положительный электрический заряд. Достаточно придать этой заряженной частице ускорение, и она создаст магнитное поле. При этом она будет подвержена влиянию сил, создаваемых любыми другими существующими магнитными полями.
С другой стороны, если атом нейтрален (не обладает электрическим зарядом), он остается в стороне от магнитных взаимодействий. При его движении поле не создается, и он не поддается воздействию сил в пределах поля. Из-за этого электрическая и магнитная силы (объединяемые термином «электромагнитная сила») во Вселенной оказывают намного меньшее влияние на формирование галактик и планет, чем гравитация. Если обратиться к цифрам, то выяснится, что электромагнитная сила на 39 порядков больше силы гравитации. И все же на больших расстояниях Вселенная нейтральна и подчиняется только силам гравитации.
Под воздействием высоких температур в звезде атомы лишаются электронов и превращаются в множество движущихся заряженных частиц, образуя ее магнитное поле. Силовые линии такого поля проходят через окружающий газ и пыль в протопланетном диске. Степень их воздействия зависит от количества заряженных частиц в диске.
Излучаемая звездой энергия отрывает электроны от атомов в диске, и в результате образуются заряженные частицы газа и пыли, которые становятся чувствительны к магнитному полю. Магнитные силы заставляют частицы переходить на другие орбиты, ускоряя процесс аккреции на звезду. Достаточно убрать магнитное поле, и скорость направленного к центру газового потока резко упадет. В непосредственной близости от звезды уровень влияния излучения на диск достигает максимального значения. В результате образуется множество заряженных частиц, которые взаимодействуют с магнитным полем. Но уже на расстоянии около 0,1 а.е. энергия звезды с трудом проникает через газ к центру диска. Число заряженных частиц падает, и газ перестает испытывать воздействие магнитного поля.
Для обозначения области, в которой магнитные силы перестают действовать, используют жутковатый термин «мертвая зона». Газ в пространстве между звездой и границей мертвой зоны быстро перемещается к центру, тогда как газ внутри мертвой зоны движется медленнее. В результате образуется своего рода затор, и плотность газа на границе мертвой зоны увеличивается. Вместе с плотностью растет и давление, что приводит к изменению сил, воздействующих на газ в этой точке диска. Благодаря этому газ начинает двигаться по орбите с той же скоростью, что и каменистые тела, то есть последние перестают испытывать сопротивление встречного ветра. Теперь, когда ничто не тормозит их и не заставляет двигаться к звезде, эти камни собираются у края мертвой зоны и начинают сталкиваться, обеспечивая рождение суперземли.
В результате изменений в характеристиках газового потока вокруг растущей суперземли планета оказывается в ловушке, что приводит к остановке миграции первого рода. То есть, вместо того чтобы нестись к (находящейся в опасной близости) звезде, планета может продолжать увеличиваться в размерах до появления разрыва в газовом диске. Затем должна начаться миграция второго рода, но к этому моменту суперземля уже настолько массивна по сравнению с газом и настолько близка к звезде, что сопротивления газа недостаточно, чтобы сдвинуть ее. Независимо от перемещений планеты разрыв обеспечивает проникновение излучения звезды в диск. Пыль и газ теряют электроны, получая заряд и вступая во взаимодействие с магнитными полями. Рядом с планетой образуется мертвая зона, граница которой движется в противоположную от звезды сторону мимо созданного планетой разрыва. На новой границе мертвой зоны начинается формирование следующей суперземли. Таким образом, после рассеивания газового диска может остаться несколько суперземель, движущихся по орбитам вокруг звезды. Описанный сценарий очень похож на то, что мы видим рядом со звездой Кеплер-11.
Идея конвейера по производству суперземель, главным механизмом которого является накопление твердых тел на границе мертвой зоны, кажется многообещающей, но в системе Кеплер-11 осталось еще немало сюрпризов.
Объединив результаты измерения масс с данными о размерах, полученными при наблюдении за прохождениями, исследователи выяснили, что ни одна из планет в системе Кеплер-11 не является каменистой. Исходя из значений плотности было сделано предположение, что у них толстые атмосферы, на которые приходится половина объема планеты. Единственным исключением является планета Кеплер-11 b, которая находится ближе всего к звезде: более высокая плотность указывает на больший размер ядра, занимающего две трети объема планеты. Однако даже такая газовая атмосфера все равно намного больше, чем у землеподобного мира. Все планеты в системе Кеплер-11 — мини-нептуны.
Поэтому любое объяснение процесса образования суперземель с учетом результатов наблюдений должно допускать возможность формирования как крупных каменистых планет, так и небольших газовых гигантов. Отсюда вопрос: могла ли планета, находясь так близко к звезде, приобрести толстую атмосферу мини-нептуна? Оказывается, что проблема не в том, как захватить достаточно газа, а в том, как остановить этот процесс.
Формирующаяся новая планета может накапливать атмосферу, втягивая газ из окружающего пространства, вплоть до того момента, когда газ протопланетного диска рассеивается. На коротких орбитах в области с большим количеством планетезималей процесс формирования суперземель должен протекать очень активно, легко укладываясь в миллион лет. Таким образом, у них остается предостаточно времени для аккреции такого объема газа, который характерен для мини-нептунов. Более того, процесс может зайти слишком далеко, и вместо мини-нептуна может появиться горячий юпитер.
Ранее считалось, что массивность горячих юпитеров исключает возможность их формирования вблизи звезды. Но не было ли это допущение поспешным? Не означает ли возможность массового перемещения строительного материала во внутренние области диска, что в конечном итоге мы получим миры размером с Юпитер?
С ростом Юпитера во внешней области Солнечной системы его гравитация достигла значения, обеспечившего захват большого объема газа. В какой-то момент планета стала настолько тяжелой, что в ее атмосфере начался процесс неудержимого коллапса: по мере опускания газа к «поверхности» Юпитера атмосфера продолжала непрерывно сжиматься. Наконец под действием гравитации планеты в газовом диске образовался разрыв, и процесс прекратился. К этому моменту успел сформироваться большой газовый гигант. На первый взгляд процесс кажется неотвратимым. Но, как оказывается, существуют факторы, которые способны остановить его.
Учитывая, что молодая суперземля формируется из скоплений каменистых тел, перемещенных к мертвой зоне во внутренней части системы, в ее атмосфере содержится много пыли. Это затрудняет охлаждение газовой оболочки планеты, так как частицы пыли блокируют излучение (говоря техническим языком, атмосфера имеет высокую непрозрачность). При более высокой температуре газ менее подвержен действию гравитации планеты, в результате чего неудержимый коллапс происходит позже, уже после рассеивания газового диска. Планете удается заполучить толстую атмосферу, но до утопающего в газах горячего юпитера ей все-таки далеко.
Решающим фактором превращения суперземли в гигантскую землеподобную планету или в небольшой газовый мир может быть протопланетный диск. При большей массе диска процесс формирования суперземли происходит быстрее, и времени для захвата атмосферы остается больше. В более легких дисках формирование суперземли может продолжаться вплоть до момента рассеивания. Поэтому такие планеты являются каменистыми и имеют более тонкие атмосферы.
Процесс образования планет там, где мы их сейчас наблюдаем, называют формированием in situ («на месте»). Если допустить возможность перемещения материала горячим юпитером с последующим накоплением на границе мертвой зоны, вероятность развития событий по этому сценарию в случае с суперземлями представляется весьма высокой. Но в любом случае ставить точку в дискуссии о происхождении суперземель еще рано.
Кеплер-11 стала своего рода эталоном звезды с компактной группой планет на близких орбитах. Но оказалась, что она такая далеко не одна. Спустя год была найдена звезда Кеплер-32 с пятью планетами размером менее 3 земных радиусов и периодами обращения 0,7–23 суток. Затем рядом со звездой HD 40307 были обнаружены три новые планеты. Таким образом, общее количество известных нам планет в этой системе достигло шести. Масса каждой из них не превышает 7 масс Земли. У пяти период обращения составляет 4–52 суток. Последовавшая за этим череда открытий в других системах показала, что похожие конфигурации миров могут быть более чем у 10% звезд.
Возникает закономерный вопрос: если такое устройство планетных систем является обычным, почему в нашей Солнечной системе все иначе? Допустим, нашим газовым гигантам удалось избежать превращения в горячие юпитеры. Но как быть с потоком планетезималей в направлении звезды в начальный период существования системы? Должна же была из него сформироваться хотя бы одна суперземля?
Также развернулась дискуссия о том, могла ли планета, сформировавшаяся in situ, удержать обширную атмосферу мини-нептуна. Несмотря на изобилие материала в месте формирования, радиус сферы Хилла планеты остается маленьким, а значит, на первом этапе все может ограничиться появлением группы зародышей планет размером с Землю (поскольку при достижении размера Земли их масса достигает значения изоляции, о котором шла речь в главе 2). В течение последующего продолжительного периода в результате столкновений зародышей планет формируется суперземля. Поскольку в процессе столкновений столь массивных тел газы могут улетучиваться, новый мир рискует превратиться в каменистую планету с тонкой газовой оболочкой.
В ответ на критику был высказан ряд предположений, позволявших обойти обозначенные проблемы: мертвые зоны в разных протопланетных дисках могут иметь свои особенности; поток планетезималей мог быть остановлен каким-то другим процессом; столкновения не обязательно должны сопровождаться мощными ударами. Но все-таки доводы противников гипотезы о ловушке мертвой зоны оказались достаточно вескими, чтобы начался поиск альтернативных вариантов объяснения.
Назад: Планетная метла
Дальше: Мигрирующая популяция