Далеко ходить не нужно
Первая альтернативная версия подкупает своей простотой: а что, если формирование суперземель происходило там же, где они находятся сейчас? Если бы удалось доказать, что миры такого типа рождались непосредственно в первичном протопланетном диске, это объяснило бы, почему их так много. Ранее мы исключили возможность формирования массивных горячих юпитеров в условиях отсутствия достаточного количества материала из твердых пород. Распространяется ли этот вывод на куда менее массивные суперземли?
Ближайшая к центру Солнечной системы планета — Меркурий. Его масса составляет всего лишь 5,5% массы Земли, а расстояние от Солнца — солидные 0,4 а.е., то есть он в три раза дальше от звезды, чем большинство горячих юпитеров и суперземель.
На первый взгляд, ничего необычного в приведенном описании нет. Предел роста планеты определяется объемом доступного вещества в протопланетном диске. Он, в свою очередь, зависит от количества пыли и планетезималей вокруг планеты, а также радиуса области ее гравитационного влияния (сферы Хилла). Сила притяжения вблизи Солнца колоссальна, а значит, под контролем гравитации планеты остается совсем небольшой кусочек пространства с ограниченным количеством нового материала, который может подпитывать рост. Поэтому планеты вблизи звезд должны быть маленькими.
Но что, если наша Солнечная система с момента своего рождения была отклонением от нормы? Может быть, ситуация, когда область формирования суперземель изобилует пылью, является обычной — пусть даже в протопланетном диске рядом с нашим Солнцем и было мало вещества? Если это так, то даже при маленьком радиусе сферы Хилла вокруг планеты будет предостаточно твердых тел.
В первой главе мы представили себе, как мог выглядеть протопланетный диск в нашей планетной системе: чтобы воссоздать первоначальное пылевое состояние, мы взяли за основу текущее положение планет и разложили их на составляющие в пространстве вокруг орбит. В результате у нас получилась протосолнечная туманность минимальной массы. А что получится, если мы проделаем то же самое с планетными системами, в которых есть суперземли?
Если мысленно раскрошить суперземли, мы получим протопланетный диск и увидим, как в нем должна была распределяться пыль, чтобы образовалось такое скопление планет. К сожалению, представляя наполненный веществом планетообразующий диск, мы сталкиваемся с проблемой. Из-за высокой концентрации пыли, находящейся во взвешенном состоянии в плотном газе, масса внутреннего диска оказывается очень большой. В этом случае должен сработать тот же самый механизм, посредством которого, согласно описанной ранее гипотезе, происходило формирование газовых планет в удаленной от центра системы части диска: внутренний диск должен рассеяться под воздействием собственной избыточной гравитации. Если бы все происходило именно так, то новые планеты походили бы на газовые гиганты и не имели ничего общего с суперземлями. Кроме того, при попытке разложить планетные системы, в состав которых входят суперземли, на мельчайшие частицы мы получаем протопланетные диски очень странной формы. Строение многих из них оказывается настолько необычным, что приходится исключить саму возможность формирования таких дисков вокруг звезды — в противном случае пришлось бы оперировать причудливыми аномалиями вроде постепенного нарастания температуры по мере удаления от звезды.
Таким образом, у нас нет универсальной модели протопланетного диска, в которой бы нашлось место суперземлям. Более вероятным представляется сценарий, в котором необходимая для формирования этих планет масса появляется после образования диска.