Сухая Земля
Источником воды могли стать скованные льдом метеориты. Эти каменистые объекты могли формироваться в окружении льда в отдаленных участках нашей Солнечной системы, а затем оказаться там, где находятся планеты земной группы. Изрытая кратерами поверхность Луны — свидетельство активной бомбардировки каменными глыбами, которые должны были сыпаться градом на планеты земной группы во время их формирования. Если на Земле атмосфера превращала в пар многие попадающие в нее метеориты, а поверхность обновлялась и разглаживалась благодаря вулканической активности, то Луна сохранила свой испещренный оспинами лик со времен бурной молодости. Если наша планета первоначально была сухой, то своими океанами она может быть обязана как раз нескончаемому потоку обледеневшего материала, барабанившего по ее поверхности.
Главными виновниками этого каменного града можно считать газовые гиганты. Благодаря своей огромной массе они создавали гравитационное притяжение такой силы, которая заставляла разлетаться по Солнечной системе остававшиеся вокруг них планетезимали подобно шарам в гравитационном бильярде. Поскольку эти каменные шары формировались по соседству с газовыми гигантами за снеговой линией, то, врываясь во внутреннюю часть Солнечной системы и попадая в планеты земной группы, они должны были приносить с собой немало льда.
Не все в этой теории появления воды на Земле до конца понятно. В частности, в Солнечной системе есть много участков, по которым разбросаны остатки сыгранного газовыми гигантами бильярдного матча. И у каждого из них своя история. Если бы удалось найти участок с каменистыми телами, похожими на те, которым мы обязаны нашими океанами, это помогло бы нам понять, как Земля стала обитаемой, и продвинуться в поисках второй планеты, способной обеспечить условия для существования жизни.
Как раз неподалеку от наших планет находится полоса таких бесхозных шаров, за которой закрепилось название пояс Койпера. Располагаясь на расстоянии 30–50 а.е., это скопление каменистых тел обращается вокруг Солнца сразу за Нептуном. Самый известный представитель пояса Койпера — карликовая планета Плутон, но считается, что ее окружают приблизительно 100 000 других крупных объектов диаметром более 100 км.
Своим именем пояс Койпера обязан американскому астроному нидерландского происхождения Джерарду Койперу, который высказал предположение, что эти объекты могли сформироваться на ранних этапах истории Солнечной системы. Впрочем, не все так однозначно: за восемь лет до публикации статьи Койпера в 1951 г. с аналогичным предположением выступил ирландский астроном Кеннет Эджворт. Более того, Койпер думал, что эта полоса объектов не просуществует долго: по его мнению, массивный Плутон должен был заставить разбежаться в стороны всех своих соседей. То есть он скорее выступал против возможности существования группы объектов, которая носит его имя. На самом деле масса Плутона намного меньше значения, которым оперировал Койпер, из-за чего он оказывает весьма незначительное влияние на своих попутчиков. Поэтому это скопление объектов часто называют поясом Эджворта — Койпера или используют термин «транснептуновые объекты».
Механизм образования пояса Койпера точно не известен. Не исключено, что это скопление тел сформировалось там, где оно находится сейчас, но его удаленность от Солнца вызывает ряд вопросов. На таком расстоянии частицы пыли в протопланетном диске должны были распределиться вдоль широкой орбиты, что снижало вероятность столкновений, необходимых для образования тел размером 100 км и даже 1000 км. Проблему усугубляет присутствие Нептуна, гравитационное притяжение которого нарушает однородность внутренних участков пояса Койпера, увеличивая скорость движущегося там вещества. Получая ускорение, частицы и планетезимали движутся недостаточно медленно, чтобы слипаться при столкновениях, что еще больше замедляет скорость их роста. Этого влияния можно было бы избежать, если бы объекты внутри пояса Койпера сформировались до появления Нептуна, но тогда скорость накопления ими массы должна была быть еще выше.
Поэтому более вероятным представляется сценарий, при котором сначала эти каменистые тела были выброшены за пределы данного участка под воздействием гравитации самых дальних газовых гигантов — Урана и Нептуна, что обеспечило формирование планетезималей и карликовых планет в более насыщенной столкновениями среде на меньшем расстоянии от Солнца, после чего они были вытолкнуты на задворки планетной системы. Нептун, безусловно, имеет прямое отношение к эволюции пояса Койпера. Его самый большой спутник Тритон когда-то был частью пояса Койпера, но потом оказался во власти Нептуна. В отличие от большинства других спутников планет в нашей Солнечной системе, Тритон движется по своей орбите в направлении, противоположном направлению вращения планеты, и имеет тот же состав, что и Плутон. Это веское доказательство того, что он сформировался не рядом с Нептуном, а попал на его орбиту позже.
Взаимодействие Нептуна с поясом Койпера не ограничивается одним лишь процессом их формирования. Если каменистые объекты из пояса приближаются к массивной планете слишком близко, они могут вновь получить ускорение и быть выброшены во внутреннюю область Солнечной системы. По мере продвижения объекта из пояса Койпера по направлению к Солнцу его ледяное тело начинает улетучиваться, образуя хвост из водяных паров. Так объект становится кометой.
Комета, получившая свое название от греческого слова «длинноволосый», появляется в небе в виде размытого пятна света, за которым тянется длинный хвост. Некоторые кометы движутся по протяженным орбитам вокруг Солнца, появляясь в небе раз в несколько десятилетий или столетий. Другие пролетают мимо нашей планеты только один раз, навсегда покидая Солнечную систему после всего одного танца вокруг Солнца.
На всем протяжении человеческой истории внезапное появление комет среди привычных созвездий воспринималось в качестве доброго или дурного предзнаменования. Особенно сильное впечатление на людей производила комета Галлея. Обращаясь по орбите с периодом 75–76 лет, она была увековечена в 70-метровом гобелене из Байе, созданном в 1070-е гг. и повествовавшем о завоевании норманнами Англии. То же самое явление в 1301 г. вдохновило флорентийского художника Джотто ди Бондоне на использование образа кометы в качестве звезды, которая привела мудрецов к месту рождения Иисуса, на религиозной фреске «Поклонение волхвов». Своим именем комета обязана британскому астроному Эдмунду Галлею, который первым понял, что упоминания о появлении кометы в 1456, 1531, 1607 и 1682 гг. относятся к одному и тому же объекту, движущемуся по периодической орбите. Галлей предсказал, что комета снова появится в 1758 г. Сам он не дожил до этого момента, но комета действительно появилась точно тогда, когда он предсказал, после чего и получила его имя. В последний раз комета Галлея появлялась в 1986 г., а ее следующий визит состоится в середине 2061 г.
Вопрос о происхождении кометы Галлея остается открытым, так что наши предки были не так уж далеки от истины, когда видели в ней загадочного предвестника из космоса. Совершая полный оборот по орбите менее чем за два столетия, комета Галлея считается, как бы это иронично ни звучало, короткопериодической кометой. Кометы этого класса обычно попадают во внутреннюю часть Солнечной системы из пояса Койпера, получая ускорение при встрече с Нептуном. В результате гравитационного воздействия орбиты этих комет имеют форму сильно вытянутых эллипсов, что отличает их от почти круговых планетных орбит. Однако, учитывая, что и Нептун, и пояс Койпера располагаются приблизительно в том же дискообразном участке пространства, что и первоначальный протопланетный диск, образующиеся в результате их взаимодействия кометы движутся вокруг Солнца в той же плоскости.
Но это не относится к комете Галлея. Ее орбита наклонена под таким большим углом к орбитам планет, что, по сути, комета повернута в другую сторону и обращается вокруг Солнца в противоположном направлении. Таким образом, если большинство короткопериодических комет лишь слегка поднимаются над плоскостью диска (менее чем на 10º), то орбита кометы Галлея наклонена к плоскости эклиптики на 162º. Столь необычная орбита свидетельствует о том, что комета начала свой путь в другом месте, а именно в облаке Оорта на краю Солнечной системы.
В отличие от объектов в поясе Койпера, вытолкнутых наружу планетами, каменистые небесные тела, образующие облако Оорта, испытали на себе куда более значительное воздействие. Приблизившись к газовым гигантам на расстояние, достаточное для получения мощного ускорения, они были заброшены планетной катапультой на самую окраину Солнечной системы. В этой критической точке направленное вовнутрь гравитационное притяжение Солнца уравновешивается обращенной вовне тягой, создаваемой гравитацией остальной Галактики. В результате появляется относительно стабильная область, в которой каменистые небесные тела не испытывают притяжения и находятся в состоянии покоя — на своего рода острой кромке по краю нашей Солнечной системы.
Этот ненадежный приют для заблудших космических глыб находится очень далеко, поэтому облако Оорта недоступно для непосредственного наблюдения. По оценкам, расстояние от него до Солнца составляет 22 000–100 000 а.е. (более 1 светового года), а количество объектов в нем, как полагают, исчисляется триллионами.
Балансируя между Солнцем и остальной Галактикой подобно акробату на тонком канате, каменистые тела в облаке Оорта теряют равновесие даже от малейшего гравитационного толчка от проходящей мимо звезды. В этом случае они устремляются во внутреннюю область Солнечной системы, где оказываются во власти солнечной гравитации, становясь долгопериодическими кометами.
Еще один, не столь давний, как комета Галлея, гость в окрестностях Солнца — комета Лавджоя. Впервые она была обнаружена австралийским астрономом-любителем Терри Лавджоем в 2014 г. В начале 2015 г. комета стала доступна для наблюдения невооруженным глазом и в конце января того же года максимально сблизилась с Солнцем. В отличие от кометы Галлея, комета Лавджоя движется по невероятно длинной петле в пределах Солнечной системы с периодом, который изначально составлял 11 000 лет. При прохождении кометы по той части Солнечной системы, где располагаются планеты, траектория ее орбиты изменилась под влиянием гравитационного притяжения, что привело к сокращению периода обращения до 8000 лет (но это все равно немыслимо много). Для сравнения: период обращения Плутона составляет всего лишь 248 лет.
Поскольку при движении по орбите объект описывает петлю, он должен возвращаться в точку отправления. Это означает, что кометы, движущиеся по орбитам с периодами обращения более 200 лет, должны начинать свой путь дальше пояса Койпера. При этом вытянутая эллиптическая форма их орбит указывает на то, что эта отправная точка находится намного дальше Плутона. Именно этот факт, наряду с разнообразием углов наклона этих долгопериодических комет, и привел Яна Хендрика Оорта к предположению о существовании вокруг Солнечной системы оболочки из удаленных объектов.
Так случилось, что Койпера и Оорта объединяло не только общее происхождение (оба астронома были голландцами): и у того, и у другого были предшественники, высказывавшие идеи, аналогичные предположениям о существовании пояса Койпера и облака Оорта. Оорт выступил со своей гипотезой о происхождении долгопериодических комет в 1950 г., но еще в 1932 г. об этом говорил эстонский астроном Эрнст Эпик. Предположение Эпика о том, что источником долгопериодических комет является облако далеко за орбитой Плутона, было опубликовано в журнале Proceedings of the American Academy of Arts and Sciences, который, как отметил в статье о работах Эпика его коллега Фред Уиппл, был «журналом, редко попадавшим в поле зрения астрономов». Не способствовало популярности статьи Эпика и ее неприметное название: «К вопросу о звездных возмущениях околопараболических орбит». Достаточно сравнить его с броским названием статьи Оорта 1950 года: «Структура кометного облака, окружающего Солнечную систему». Скорее всего, Оорт действительно не был знаком с этой более ранней публикацией, поскольку в своей статье он поблагодарил Уиппла за то, что тот привлек его внимание к работе Эпика: «Я в долгу перед доктором Уипплом, за то что он обратил мое внимание на интересную статью Эпика, в которой также рассматривается воздействие звезд на облако метеоритов или комет. Эта статья, с которой я имел возможность ознакомиться только после того, как были написаны первые три части настоящей работы, посвящена влиянию проходящих звезд на сильно вытянутые орбиты».
Этот небрежный стиль кардинально отличается от принятого в современных научных журналах: сегодня Оорту, несомненно, пришлось бы провести подробное сравнение своей теории с моделью Эпика независимо от количества законченных разделов!
Несмотря на редкость упоминания Эпика в качестве автора идеи наряду с Оортом, в знак признания заслуг обоих исследователей облако Оорта иногда называют облаком Оорта — Эпика.
Комета Галлея остается аномалией для обоих источников комет. У нее слишком короткий период, чтобы она могла добраться до облака Оорта, а ее угол наклона слишком велик для кометы из пояса Койпера. К тому же, хотя период кометы Галлея практически не изменился как минимум с 260 г. до н.э., когда-то он, вероятно, был намного длиннее, но сократился в результате взаимодействий с планетами. Ситуация, когда комета из облака Оорта имеет период, сравнимый с периодами комет из пояса Койпера, является необычной, но не уникальной. К настоящему времени обнаружено чуть менее 100 комет того же типа, что и комета Галлея, тогда как общая численность известных комет превышает 5000.
Резервуары комет — главные кандидаты на роль источников воды на Земле. Формируясь в окрестностях газовых гигантов, кометы обильно покрыты льдом. Во время процессов рассеивания, благодаря которым они оказались там, где находятся сейчас, через Солнечную систему проследовало немало этих небесных тел, и некоторые из них ударялись о сухую поверхность Земли. Но действительно ли они принесли воду в наши океаны?
Ответ заключен в самих кометах. Если миллиарды лет назад именно они стали источником воды, тогда вода, заключенная в их ледяной оболочке, должна походить на воду, которая существует на Земле.
Как это ни странно, не вся вода одинакова. Чаще всего вода отличается по такому параметру, как отношение количества водорода к количеству его более тяжелого собрата дейтерия. И водород, и дейтерий представляют собой простые атомы с одним электроном. Отличаются они только строением центрального ядра: в атоме водорода содержится только один протон, а в атоме дейтерия есть и протон, и нейтрон. Молекула воды состоит из атома кислорода, который может быть связан либо с двумя атомами водорода, либо с одним атомом водорода и одним атомом дейтерия, либо с двумя атомами дейтерия. В последнем случае ее называют тяжелой водой (или полутяжелой, если в молекуле один атом водорода и один атом дейтерия), чтобы указать на вес дополнительного нейтрона. На Земле тяжелая вода встречается в естественной среде, но только в небольших количествах. На один атом дейтерия на нашей планете приходятся приблизительно 6700 атомов водорода. Если то же соотношение наблюдается в кометах, они вполне могут быть источников воды в наших морях.
Самый лучший способ узнать состав воды в кометах — поймать одну из них. Осуществить это удалось в ходе одной из самых амбициозных космических миссий десятилетия — миссии «Розетта».
Космический аппарат «Розетта» был запущен Европейским космическим агентством (ЕКА) в марте 2004 г. У миссии были следующие цели: перехватить комету 67P / Чурюмова — Герасименко, проследовать за этим покрытым льдом каменистым телом на его пути к Солнцу и посадить на его поверхность зонд. К тому моменту уже был накоплен опыт приближения к кометам, но никто до того не ставил цель облететь ядро кометы, и уж тем более посадить на нее космический аппарат.
На самом деле сначала целью была не комета 67P /Чурюмова — Герасименко, планировалось, что «Розетта» отправится к комете 46P/Виртанена. Однако из-за неудачного запуска в конце 2002 г. двух ракет-носителей «Ариан-5» миссию пришлось отложить на год. Во время этой паузы комета 46P/Виртанена оказалась вне зоны досягаемости, и в мае 2003 г. была выбрана новая цель — комета 67P / Чурюмова — Герасименко.
Вторую часть своего имени комета 67P / Чурюмова — Герасименко получила в честь открывших ее советских астрономов Клима Ивановича Чурюмова и Светланы Ивановны Герасименко. Открытие было сделано 20 сентября 1969 г. по чистой случайности, когда Чурюмов рассматривал сделанную Герасименко фотографию кометы 32P / Комас Сола. Приглядевшись внимательнее, Чурюмов понял, что в объектив попал еще один объект— неизвестная комета.
Чтобы не спотыкаться о труднопроизносимые имена двух астрономов, эту комету часто называют по первой части ее официального имени — «67P». Данный шифр указывает на то, что комета стала 67-й периодической кометой, обнаруженной астрономами. Неудивительно, что на первом месте в списке периодических комет стоит комета с большой историей — комета Галлея, полное официальное название которой — 1P/Галлей.
Затрачивая на полный оборот по орбите около 6,5 лет, комета 67P является короткопериодической кометой, которая, как считается, когда-то была частью пояса Койпера. За последние несколько столетий 67P приблизилась к Солнцу всего лишь на расстояние 4 а.е., оставаясь внутри орбиты Юпитера, где температура недостаточно высока, чтобы в результате испарения ледяного тела у кометы появился хвост. Вот почему этот обломок горных пород не был виден с Земли. В 1840 г. траектория кометы изменилась. В какой-то момент, двигаясь по своим орбитам вокруг Солнца, Юпитер и 67P случайно оказались рядом, и под влиянием гравитационного притяжения газового гиганта комета сместилась, перейдя на другую орбиту. В 1959 г. встреча повторилась, в результате чего ближайшая точка орбиты кометы оказалась на расстоянии, чуть большем расстояния от Земли до Солнца, а именно 1,29 а.е. А еще 10 лет спустя ее обнаружили. Учитывая влияние Юпитера на комету 67P, ее также относят к семейству комет Юпитера — классу объектов, орбиты которых находятся под контролем планеты-гиганта.
Миссия «Розетта» была названа так в честь знаменитого древнеегипетского Розеттского камня. Сейчас он находится в Британском музее в Лондоне. На нем высечен текст указа, изданного от имени 13-летнего египетского царя Птолемея V в 196 г. до н.э. Поводом для указа стало неудавшееся восстание жрецов в городе Ликополисе, отказавшихся платить налоги в казну фараона. Новый указ был призван закрепить царский статус молодого правителя, провозглашая его божеством, которому следовало поклоняться в храмах по всему Египту.
Впрочем, называя проект в честь Розеттского камня, организаторы имели в виду вовсе не сакральный смысл указа, а то, что его текст повторяется на трех разных языках. Текст в верхней части камня написан египетскими иероглифами, то есть тем типом письма, который был предназначен как раз для таких официальных документов. Ниже тот же текст переписан египетским демотическим письмом, использовавшимся в повседневном обиходе, и наконец — на древнегреческом языке, который широко использовался в системе управления. Благодаря этому Розеттский камень стал ключом к сложнейшей головоломке — расшифровке иероглифического письма, представляющего собой смесь знаков, обозначающих звуки, и идеограмм. Как раз эта особенность камня подтолкнула исследователей к тому, чтобы назвать его именем космический аппарат: если Розеттский камень помог проникнуть в тайну иероглифов, аппарат «Розетта» должен был помочь раскрыть секреты комет.
Аппарат «Розетта» нагнал комету 67P между Марсом и Юпитером на расстоянии приблизительно 3 а.е. от Солнца. Ему пришлось проделать сложный путь, включавший три петли вокруг Земли и одну вокруг Марса. В итоге, подгоняемый гравитацией планет, он добрался до нужной точки, находящейся на таком большом удалении. Всего аппарат «Розетта» преодолел 6,4 млрд км, проделав путешествие длиной в десятилетие. Оказавшись далеко от Солнца и испытывая дефицит солнечной энергии, «Розетта» перешла в режим пониженного энергопотребления. Пробудилась она в январе, за несколько месяцев до встречи с кометой, которая должна была состояться осенью 2014 г., дав о себе знать фразой «Привет, мир!» в ленте в «Твиттере». Как это ни удивительно, но, когда «Розетта» покидала Землю, эта социальная сеть еще даже не существовала.
Зонду «Розетта» удалось выполнить большую часть запланированной программы исследований, но воображение множества людей по всему миру взбудоражило вовсе не это, а посадка на поверхность кометы спускаемого аппарата. Роботизированный посадочный модуль размером с холодильник получил название «Филы» в честь египетского острова, на котором был найден обелиск, содержавший дополнительные подсказки для расшифровки иероглифов. Запланированный на 12 ноября 2014 г. спуск на поверхность кометы занял семь часов напряженного нервного ожидания. Модуль держал в напряжении не только команду проекта: рискуя потерпеть фиаско на глазах у всего мира, Европейское космическое агентство вело онлайн-трансляцию приземления, за которой следило 10 млн человек по всей планете. Когда в 16:02 по Гринвичу было получено подтверждение того, что «Филы» коснулся поверхности кометы, ликовал весь мир. К сожалению, модулю не суждено было остаться там надолго.
Из-за несработавших реактивных двигателей и гарпунов, которыми был оснащен «Филы», маленький зонд не смог закрепиться на поверхности кометы. Он отскочил, что было опасно, поскольку модуль мог вырваться из слабого гравитационного поля кометы. Каким-то чудом «Филам» все-таки удалось вернуться на поверхность, но на этот раз он оказался лежащим на боку на затененном участке с неровным рельефом. Из-за тени солнечные батареи не могли обеспечить подзарядку дополнительных аккумуляторов «Фил». В результате, исчерпав за два с половиной дня заряд основной батареи, модуль переключился в режим ожидания.
Поначалу еще была надежда на то, что модуль вернется в активный режим при приближении кометы к Солнцу. Однако, не считая кратковременного спорадического обмена сигналами в июне 2015 г., он не подавал никаких признаков активности. В феврале 2016 г. ЕКА заявило, что «Филы» вряд ли когда-нибудь еще выйдут на связь. Впрочем, даже за столь непродолжительный период активности «Филы» сумели выполнить запланированную научную программу на 80%. Одновременно с этим продолжался сбор данных космическим аппаратом «Розетта», который все это время находился над кометой.
Гравитационное поле кометы в сотни тысяч раз слабее поля Земли, поэтому занять орбиту свободного падения и двигаться по ней вокруг кометы «Розетта» не мог. Вместо этого с помощью своих двигателей он описывал треугольник вокруг ядра, после чего начиналось неуклонное снижение к поверхности кометы. Минимальное расстояние от аппарата до ядра составило приблизительно 10 км.
Когда «Розетта» преодолела отметку 100 км над скалистым ландшафтом, она погрузилась в мутную газовую оболочку, окружающую ядро кометы. Это был первый контакт с водой кометы. И оказалось, что она отличается от земной. Вода кометы 67P в три раза богаче дейтерием воды в океанах Земли.
Задолго до «Розетты», которая стала первым космическим аппаратом, сопровождавшим комету в ее путешествии вокруг Солнца, еще одной миссии ЕКА удалось пролететь мимо кометы Галлея. Произошло это в марте 1986 г., когда зонд «Джотто» взял образцы комы кометы. Впоследствии проведенные им измерения были подкреплены данными 10 наземных наблюдений за различными кометами из пояса Койпера и облака Оорта. Аналогичная земной доля тяжелой воды была зафиксирована лишь однажды.
Данные с «Розетты» послужили материалом для сотен журнальных публикаций, но результаты анализа имеющейся на комете воды были опубликованы одними из первых. В декабрьском номере Scienceза 2014 г. появилась статья, в которой был сделан вывод о том, что по мере удаления от Солнца вода ставится тяжелее. Таким образом, источник наших морей следует искать ближе к Земле.
Ближайшее к нам скопление осколков горных пород — это пояс астероидов между Марсом и Юпитером. Приблизительно 1–2 млн объектов размером свыше 1 км вращаются по орбитам вокруг Солнца, образуя полосу шириною чуть больше 1 а.е. Когда в июле 1972 г. зонд NASA «Пионер-10» впервые оказался внутри пояса астероидов, были опасения, что космический аппарат может быть уничтожен в результате случайного столкновения с одним из многочисленных осколков. На самом деле, благодаря тому, что пояс занимает огромное пространство, расстояния между астероидами очень велики, в среднем достигая нескольких миллионов километров.
Как и у пояса Койпера, у пояса астероидов есть своя собственная карликовая планета — Церера. Также в нем есть ряд других примечательных объектов, включая астероиды Веста, Паллада и Гигея, каждый размером более 400 км.
В поясе астероидов могла бы сформироваться еще одна планета, но из-за влияния гравитации Юпитера столкновения твердых тел здесь происходили на больших скоростях, что затруднило появление нового мира. Подобно Нептуну, находящемуся на другом краю области газовых гигантов, Юпитер также проявлял большую активность, притягивая и выталкивая каменистые тела. Поэтому астероиды на той стороне пояса, которую занимает Юпитер, более богаты водой: их формирование проходило в непосредственной близости от снеговой линии при участии объектов, которые выталкивал во внутреннюю область Юпитер.
Оказываясь во власти гравитации Юпитера в неудачный момент или сталкиваясь друг с другом, некоторые астероиды сходят со своих орбит и устремляются к Солнцу. В отличие от комет астероиды не содержат такого количества льда, которое необходимо для появления хвоста. Поэтому при попадании в окрестности Земли они получают статус околоземного объекта (ОЗО).
Траектории движения некоторых ОЗО пролегают в непосредственной близости от Земли. С одной стороны, они создают угрозу для нашей планеты, с другой — мы можем извлечь пользу из такого сближения. Например, до них намного легче добраться. Как раз для этого в 2014 и 2016 гг. были запущены две космические станции: японская «Хаябуса-2» и американская «ОСИРИС-Рекс».
«Хаябуса-2» — преемница добравшейся до астероида Итокава станции «Хаябуса», о которой шла речь в первой главе. Итокава — астероид класса S, так называемый каменный астероид. Представители этого класса космических тел, как правило, происходят из внутренней области пояса астероидов. Место формирования определяет особенности их строения. Астероиды класса S — сухие астероиды. Их поверхность несет на себе следы окружающей космической среды: она подвергается бомбардировке частицами солнечного ветра и воздействию солнечной радиации. После таких воздействий Итокава мог служить хорошим источником информации о том, что происходит с астероидами, но едва ли мог пролить свет на природу каменистых тел, сталкивавшихся с Землей на ранних этапах ее эволюции.
По этой причине «Хаябусу-2» запустили к астероиду иного типа. Ее целью стал астероид класса C под названием Рюгу. К этому классу относятся углеродистые астероиды, которые, как считается, претерпели относительно мало изменений с момента образования Солнечной системы 4,56 млрд лет назад. Сейчас Рюгу движется по орбите вокруг Солнца между Землей и Марсом, однако в начале своего пути он, вероятнее всего, был частью основного скопления астероидов класса C на дальней, ледяной стороне пояса астероидов.
Запуск «Хаябусы-2» состоялся в начале декабря 2014 года. Запланированное время приближения станции к Рюгу — 2018 год. Так сказать, на пятки ей наступает другая космическая станция — «ОСИРИС-Рекс» (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer, OSIRIS-REx), запущенная NASA осенью 2016 г. и направляющаяся к другому астероиду класса C под названием Бенну. Задача обеих станций — взять и доставить на Землю образцы. Это означает, что они не только будут передавать информацию об астероидах, но также вернутся на Землю с частицами, собранными с их поверхности. Как показывает опыт «Филы», посадка модуля на астероид, без чего получить образцы невозможно, представляет собой задачу колоссальной сложности. Но игра стоит свеч.
В найденных на Земле метеоритах со следами присутствия воды также содержится множество органических молекул. Таким образом, можно сделать смелое предположение о том, что при «жесткой» посадке на молодую Землю каменистые небесные тела приносили с собой не только воду, но и нечто, из чего могла зародиться сама жизнь. Поэтому образцы с астероидов Рюгу и Бенну помогут не только проверить гипотезу о происхождении земных океанов, но и пролить свет на самые первые шаги жизни на Земле.
Своим названием астероид Рюгу обязан японской народной легенде о рыбаке по имени Урасима Таро, который спас морскую черепаху от мучивших ее детей. По счастливому стечению обстоятельств черепаха оказалась дочерью повелителя морей. В награду за доброту Урасиме было позволено спуститься в подводный дворец Рюгу и провести там три дня с принцессой в человеческом обличье. Однако, вернувшись домой, Урасима обнаружил, что на самом деле он отсутствовал 300 лет. В смятении он открыл подаренную принцессой шкатулку. Из нее вырвалось облако дыма и окутало рыбака. Когда дым рассеялся, Урасима стал ветхим стариком — в шкатулке был его истинный возраст.
«Хаябуса-2» и «ОСИРИС-Рекс» вернутся на Землю в 2020 и 2023 гг. соответственно. Исследователи надеются, что, подобно шкатулке из Рюгу, в которой заключалась жизнь Урасимы, собранные образцы помогут нам разгадать секрет зарождения жизни на Земле.