«Ага! Вот оно!» и настоящее запоминание
Но это только самое начало. Нужно ведь, чтобы явленная посреди лекции мысль удержалась хотя бы час, не говоря уже о том, чтобы дождаться в голове экзамена. Как же получается так, что этот всплеск возбуждения сохраняется, не сглаживается, а рецепторы NMDA – запоминают, т. е. в будущем при необходимости с легкостью активируются? Как это повышенное возбуждение становится долговременным?
И вот теперь самое время представить вам долговременную потенциацию (LTP – от англ. long-term potentiation). Впервые она была продемонстрирована Терье Лёмо из Университета Осло; ее суть в том, что первая вспышка активации NMDA вызывает длительное увеличение возбудимости синапса. Над разгадкой секрета долговременной потенциации билось множество светлых голов. И выяснился следующий ключевой факт: NMDA-рецепторами открываются не натриевые каналы, а кальциевые; в клетку попадает именно кальций. В результате происходит целый ряд изменений, и вот некоторые из них:
а) Волна кальция приводит к вставке новых глутаматовых рецепторов в мембрану дендритного шипика. В результате нейрон легче откликается на появление глутамата.
б) Кальций меняет также и те глутаматовые рецепторы, которые уже находятся в мембране, на переднем фронте дендритного шипика. У каждого повышается чувствительность к глутаматовым сигналам.
в) Кальций запускает синтез определенных нейромедиаторов в шипике; эти нейромедиаторы выделяются в синаптическую щель и отправляются в обратном направлении, т. е. к окончанию аксона. Оказавшись на месте, они, когда в аксоне в будущем возникнет потенциал действия, увеличат выход глутамата.
Иными словами, долговременная потенциация выражается в том, что аксон со своей пресинаптической стороны кричит «ГЛУТАМАТ!» громче, а шипик со своей постсинаптической стороны слушает внимательнее.
Есть и другие механизмы долговременной потенциации. Ученые спорят, какой из механизмов главнее (склоняясь, как правило, к предмету своего изучения) в реальных процессах обучения. Что для обучения важнее – постсинаптические или пресинаптические трансформации: вот основная тема дебатов специалистов.
Пока обсуждалась долговременная потенциация, пришло время для следующего открытия, восстановившего равновесие во Вселенной. Речь идет о долговременной депрессии (LTD – от англ. long-term depression) – зависимом от опыта долговременном снижении синаптической возбудимости (любопытно, что механизмы LTD не являются просто повернутыми вспять механизмами LTP). Ее, LTD, нельзя считать и функциональной противоположностью LTP: долговременная депрессия не является основой забывания, она, скорее, обостряет сигнал, затушевывая лишние шумы.
И наконец, вот что: следует понимать, где долговременный, а где долгое время. Как мы говорили, одним из основополагающих механизмов LTP является трансформация рецепторов в сторону более чуткого реагирования на глутамат. Подобное преобразование сохраняется, пока работают рецепторы, измененные в ходе долговременной потенциации. Но продолжительность их жизни измеряется днями, за это время они накапливают дефекты из-за вредного действия радикалов кислорода, деградируют и заменяются на новые (такие процессы свойственны любым белковым молекулам в клетках). Поэтому изменения при долговременной потенциации каким-то образом передаются следующим поколениям рецепторов. А как еще восьмидесятилетние бабушки и дедушки могут помнить свой детский сад?
Все это прекрасно, но пока что мы говорили о запоминании некоторой явной информации, к примеру телефонного номера, т. е. о том, чем занимается гиппокамп. А нас больше интересует другое – как мы учимся бояться, контролировать себя, сочувствовать или даже относиться к кому-то с безразличием.
Синапсы, выделяющие глутамат, находятся не только в гиппокампе. Они, как и долговременная потенциация, присутствуют во всей нервной системе. Для многих исследователей, которые изучали LTP в гиппокампе, это явилось неприятным открытием: одно дело, когда Шопенгауэр читает Гегеля, а в это время в его гиппокампе происходит долговременная потенциация, и совсем другое, когда та же долговременная потенциация обнаруживается в спинном мозге при обучении тверку.
Тем не менее LTP происходит по всей нервной системе. Например, при выработке условных рефлексов на боль долговременная потенциация затрагивает базолатеральную миндалину. Затем, при необходимости контролировать миндалину, LTP имеет место в лобной коре. Именно так дофаминовая система учится связывать стимул с наградой – например, у наркоманов то конкретное место, где они получали наркотик, немедленно вызывает страстное желание.
А теперь добавим к этой системе гормоны, переведя таким образом наши идеи о стрессе на язык нейронной пластичности. Небольшой, проходящий стресс (а мы считаем его хорошим, стимулирующим) порождает в гиппокампе долговременную потенциацию, тогда как продолжительный стресс обрывает ее и порождает там долговременную депрессию. И это одна из причин, почему наш здравый смысл временами трещит по швам. Вот так и выводится закон оптимального уровня стресса Йеркса – Додсона – он предписан нам синапсами.
Затяжной стресс и высокий глюкокортикоидный фон имеют, помимо того, и другие следствия. В частности, в миндалине они усиливают LTP и подавляют LTD, ускоряя выработку реакции страха; а в лобной коре в этих условиях LTP ослабляется. И что получится, если скомбинировать эти эффекты? Итогом будут более возбудимые синапсы в миндалине и менее возбудимые в лобной коре; перед нами переживающий стресс человек, вспыльчивый, со слабым контролем поведения.
Назад из мусорной корзины
Сейчас в представлениях о механизмах памяти доминирует гипотеза синаптического усиления. Но удивительным образом пригодилась и забракованная идея о формировании новых синапсов. Когда научились считать синапсы в нейронах точнее – спасибо новой технике, – выяснилось, что если крыс содержать в разнообразной, стимулирующей обстановке, то число синапсов в гиппокампе растет.
Применяя изощреннейшие методики, можно наблюдать, как по ходу обучения у крысы меняется та или иная дендритная веточка. И это фантастика! Мы видим, как за минуты или часы отрастает новый дендритный шипик, тянется к нависшему рядом аксональному кончику. А спустя неделю-другую между ними формируется и функциональный синапс, который стабилизирует новое воспоминание/навык (при других обстоятельствах дендритный шипик, наоборот, втягивается, а синапс исчезает).
И этот индуцированный действием синаптогенез взаимоувязан с долговременной потенциацией: когда в синапсе происходит LPT, кальциевая цунами в шипике запускает заодно и формирование нового шипика по соседству.
Новые синапсы появляются по всему мозгу. Разучиваешь какие-нибудь гимнастические упражнения – синапсы возникают в моторной коре, смотришь на что-то много раз – вот они и в зрительной коре. А если трогать крысу за усики один раз, другой, третий – то новые синапсы появляются у крысы, в вибриссовой зоне коры.
Более того, когда в нейроне сформировано достаточно много новых синапсов, то количество и длина веточек дендритного «дерева» тоже возрастают, увеличивая, таким образом, число вероятных аксональных переговорных пунктов.
В истории об оптимальном стрессе (закон Йеркса – Додсона) стрессу и глюкокортикоидам отведена своя роль. Средний, проходящий стресс и соответствующий ему уровень глюкокортикоидов увеличивают число шипиков в гиппокампе, а длительный стресс (со своим уровнем глюкокортикоидов) действует в противоположном направлении. И даже еще хуже: при хронической депрессии и тревожных состояниях – двух синдромах, которые характеризуются повышенным уровнем глюкокортикоидов, – уменьшается количество шипиков и размер самого дендритного дерева в гиппокампе. И дело тут в пониженном количестве фактора роста BDNF, о котором говорилось в предыдущей главе.
Хронический стресс и высокий уровень глюкокортикоидов вызывают редукцию шипиков и потерю синапсов, снижают уровень молекул склеивания нервных клеток, стабилизирующих синапсы (NCAM, от англ. neural cell adhesion molecule), уменьшают выброс глутамата в лобной коре. Чем больше выражены эти изменения, тем труднее принимать решения, тем хуже внимание.
В главе 4, как мы помним, сообщалось, насколько явно стресс усиливает взаимосвязь лобной коры и двигательных отделов мозга и при этом ослабляет связь лобной коры и гиппокампа. В результате принятие решений идет по накатанной, а новые обстоятельства во внимание не принимаются. В том же ключе срабатывает хронический стресс: он увеличивает число шипиков в лобно-моторных путях и уменьшает его в лобно-гиппокамповых.
Добавим к отличиям миндалины от лобной доли и гиппокампа еще одно: хронический стресс увеличивает уровень BDNF и количество дендритов в БЛМ, таким образом укрепляя реакцию страха и усиливая тревожность. То же самое происходит и в том транспортном узле, из которого расходятся пути из миндалины в другие части мозга (это ЯЛКП). Вспомним, что если БЛМ включена в формирование реакции страха, то центральная миндалина занимается врожденными фобиями. И любопытно, что стресс не затрагивает врожденные фобии и не влияет на число шипиков нейронов центральной миндалины.
Заметим здесь интереснейшую особенность, а именно связь с контекстом. Когда у крысы в ответ на ужас вырабатываются тонны глюкокортикоидов, это приводит к атрофии дендритов в гиппокампе. Но когда она с удовольствием бегает в колесе, выбрасывая точно такое же количество глюкокортикоидов, то дендриты, наоборот, растут. Выглядит все так, как будто гиппокамп должен приписать эти глюкокортикоиды «хорошему» или «плохому» стрессу, а затем дать – или, соответственно, не давать – указание миндалине вступать в игру.
На число шипиков и длину дендритных отростков в гиппокампе и лобной коре положительно влияет эстроген. У самок крыс дендритные деревья вытягиваются и сжимаются, как аккордеон, в согласии с овуляционным циклом: эстроген растет – и деревья растут (и между прочим, когнитивные показатели у самок растут тоже).
Резюмируем: нейроны могут отращивать новые дендритные веточки и шипики, увеличивая размер дендритного дерева, или – в других обстоятельствах – могут их уменьшать; а гормоны при этом выступают в качестве исполнителей.
Пластичность аксонов
Между тем на другом конце нейрона, аксональном, есть своя пластичность: аксоны могут давать свои ростки, которые отправляются осваивать новые пути. Вот удивительнейший и нагляднейший пример. Когда незрячий человек учится читать по шрифту Брайля, у него, как и положено, активируется тактильная область, но кроме нее, заметьте, возбуждается одновременно и зрительная кора. Иными словами, нейроны, которые обычно посылают аксоны в тактильную область, обрабатывающую информацию от кончиков пальцев, на этот раз заставляют аксоны уйти с маршрута на тысячи нейронных миль и дорасти до зрительной области. Описан один поразительный случай слепой от рождения женщины, у которой вследствие инсульта пострадала зрительная кора. В результате она потеряла способность читать по Брайлю. Выпуклые буквы казались ей теперь плоскими, нечеткими – но при этом другие тактильные функции остались в норме. В другом исследовании слепых людей учили ассоциировать буквы Брайля с определенным звуковым тоном; нужно было добиться того, чтобы последовательность звуков воспринималась как последовательность букв или слов. И когда такие обученные испытуемые «читали со звуком», то у них возбуждалась та часть зрительной коры, которая активируется при чтении у зрячих. Сходные явления известны и для глухих, использующих жестовый язык. Когда они смотрят на поющего человека, у них активируется та часть слуховой коры, которая в обычном случае возбуждается звуками речи.
При травмах нервная система может несколькими способами перепланировать себя. Предположим, при инсульте у человека повреждена часть коры, которая отвечает на тактильные сигналы, поступающие от руки. Тактильные рецепторы в пальцах в норме, но им не с кем вести переговоры. И в результате человек теряет чувствительность. Спустя месяцы, а иногда и годы аксоны, идущие от этих рецепторов, отращивают новые ветки в соседние области коры и там формируют новые синапсы. В результате руке вернется чувствительность, пусть и менее точная, чем раньше (так же снизится чувствительность той части тела, нейроны которой проецируются в область коры, принявшую аксонов-перебежчиков).
Давайте вообразим, что перестали работать тактильные рецепторы ладони. Теперь от них не идут аксоны к соответствующей области коры. Но кора не выносит пустоты, и вот уже аксоны от осязательных нейронов запястья пускают свои веточки на заброшенную соседнюю территорию в коре. Представим, что будет при деградации сетчатки, когда рецепторы из нее больше не посылают сигналов в зрительную кору. Как в случае со слепыми людьми, нейроны от кончиков пальцев, обученные читать азбуку Брайля, отсылают отростки в зрительную область, обустраивая там свой собственный лагерь. Или ситуация с псевдотравмой: после нескольких дней, проведенных испытуемым с повязкой на глазах, его слуховые нейроны начинают переориентироваться на зрительную область (и уходят обратно, когда повязку снимают).
Предположим, что отростки нейронов из осязательной области, относящейся к кончикам пальцев, обученным азбуке Брайля, ушли в зрительную кору. И допустим, мы знаем, что тактильная область коры далеко отстоит от зрительной коры. Тогда нужно понять, каким образом нейроны, занятые осязанием, узнают:
а) что где-то в зрительной области есть пустующая территория;
б) что скучающие зрительные нейроны поспособствуют преобразованию выпуклостей под пальцами в читабельную информацию;
в) как вообще отправить аксональный отросток на неизведанную доселе территорию.
Сейчас ученые как раз и работают над этими вопросами.
Что происходит, когда слуховые нейроны посылают свои отростки в не занятую делом зрительную кору, расширяя таким образом зону своего влияния? У слепого обостряется слух – вот что происходит: мозг восполняет дефицит одной функции за счет усиления другой.
Итак, отростки сенсорных нейронов можно перенаправить в другие места. И если уж зрительные нейроны оказываются вовлечены в чтение по Брайлю, то и они, в свою очередь, вынуждены перепланировать путь собственных отростков в новые, соответствующие задаче места, где опять же потребуется перепланировка. Это волны пластичности.
Перепланировка постоянно происходит и в отсутствие травм. Мой любимый пример – музыканты. У них области коры, вовлеченные в обработку звуковой информации, существенно больше, чем у немузыкантов. Особенно это касается областей, отвечающих за звуки их собственного инструмента и определение высоты голоса. Чем раньше ребенка начинают учить музыке, тем сильнее эта перестройка.
Для такой перепланировки не требуется десятилетий практики, как показал в своей красивой работе Альваро Паскуаль-Леоне из Гарвардского университета. Добровольцев-немузыкантов каждый день по два часа учили играть на пианино упражнение для пяти пальцев. Через несколько дней тренировок область моторной коры, заведующая движениями руки, расширилась, правда, это увеличение без последующих тренировок сохранялось всего около суток. По существу похоже на открытый Хеббом процесс, т. е. на усиление уже существующих связей после повторов действий. Но если ученик упорен в своих занятиях – по два часа ежедневно, то через четыре сумасшедшие недели перестройки в коре не исчезают, а сохраняются еще в течение многих дней. Предположительно, по мере тренировок отрастают новые аксоны и формируются новые нейронные связи. Любопытно, что такие же перестройки в коре происходили и у тех, кто это упражнение не играл по два часа в день, а воображал по два часа в день, как он его играет.
Еще одним примером подобных перестроек является расширение зоны коры, связанной с чувствительностью кожи вокруг сосков; это расширение регистрируется у самок крыс сразу после рождения детенышей. И другой пример – совсем иного рода: когда учишься жонглировать, то через несколько месяцев тренировок расширяется область зрительной коры, которая обрабатывает визуальную информацию о движениях.
Мы видим, что под влиянием опыта меняются число и сила синапсов, широта дендритного охвата и цели аксональных отростков. Пришло время самой главной революции для отяжелевшей нейробиологии.