Книга: Профессиональные советы домашнему электрику
Назад: Глава 11 АВТОМАТЫ ЗАЩИТЫ ОТ ТОКА КОРОТКОГО ЗАМЫКАНИЯ И ПЕРЕГРУЗКИ СЕТИ
Дальше: 11.2. Ввинчиваемые автоматические выключатели ПАР с резьбой Е-27

11.1. Причины возникновения перегрузок сети и коротких замыканий

Защита от последствий короткого замыкания
Для защиты от возгорания при КЗ или перегрузке в электросети устанавливаются автоматические выключатели, пробки. Принцип их действия и устройство подробно рассмотрены далее.
Рассмотрим, откуда может возникнуть КЗ? Естественно поставить перед собой вопрос: в чем проявляется нагрузка, например, проводов? Что может перегружаться и изнашиваться, если нет механического движения? Что и от чего нужно защищать? Чтобы ответить на эти вопросы, вспомним, как включена лампа. К ней присоединены два провода. По одному из них ток подходит к нити, по другому — возвращается в сеть. Чтобы направить ток именно по этому пути, провода друг от друга изолированы.
Мы можем безопасно вводить в наши квартиры электроэнергию, включать и отключать лампы и приборы по нашему усмотрению именно потому, что в электросети применяются не только проводники и не только изоляция, а правильное и глубоко продуманное сочетание тех и других. Без проводников нельзя подвести ток к лампам и приборам. Без изоляции (резина, пряжа, бумага, пластмасса) нельзя ни направлять электроэнергию по нужным путям, ни выключать ток.
Изнашивается в электроприборах и проводке в основном изоляция. Резина, например, высыхает, растрескивается и осыпается, пряжа и бумага обугливаются, пластмассы оплавляются и размягчаются. Но все это происходит при достаточно высокой температуре. Пока эта температура не превышена (для резины, например, 65 °C), изоляция работает устойчиво надежно и служит достаточно долго.
Причиной повышения температуры изоляции является нагрев проводников, которые она окружает. А проводники нагреваются потому, что проходящий через них ток преодолевает их электрическое сопротивление, на что расходуется электроэнергия, которая и переходит в теплоту.
Температура одного и того же провода зависит от силы тока, проходящего по нему, называемого в электротехнике нагрузкой. Чем нагрузка больше, тем провод горячее. Ток не должен нагревать провод выше допустимой температуры. Ток, вызывающий чрезмерный нагрев, является перегрузкой.
Нужно знать, что перегрузки очень резко сокращают срок службы. Достаточно, например, всего на 10 °C повысить температуру катушки электромагнита по сравнению с расчетной, чтобы срок ее службы сократился вдвое. При больших перегрузках изоляция быстро разрушается (перегорает) и между проводами возникает короткое замыкание.
С крайней опасностью перегрузок и КЗ столкнулись еще первые электротехники. Поэтому в числе самых первых, самых необходимых аппаратов (рубильников, патронов) были созданы и простейшие предохранители — приспособления, автоматически прерывающие ток при длительных перегрузках и практически мгновенно — при коротких замыканиях.
Чтобы разобраться, на чем основана защита, и как содержать ее в исправном состоянии, нужно отдать себе отчет во взаимной связи некоторых явлений.
Количество теплоты и температура
Количество теплоты, выделяющейся в проводнике при прохождении по нему тока, пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.
Значит, чем дольше включены лампы, приборы, провода, тем больше теплоты в них выделяется. При этих условиях, казалось бы, и температура должна непрерывно возрастать. Однако из повседневного опыта каждый знает, что это не так.
Накал лампы не увеличивается с течением времени, плитка при включении в сеть действительно накаляется постепенно, но, достигнув определенного накала, больше не разогревается. В чем же здесь дело?
Дело в том, что одновременно с нагреванием всегда происходит охлаждение, причем, чем выше температура, тем охлаждение интенсивнее. Поэтому рост температуры постепенно замедляется и, наконец, при некоторой температуре, наступает равновесие: сколько теплоты выделяется, столько же и отводится.
Как же поступить, если температура слишком высока, а нагрузку снизить нельзя? Здесь есть два пути: либо улучшить охлаждение, либо уменьшить количество выделяющейся теплоты. Но так как устраивать вентиляцию для охлаждения проводов и приборов практически невозможно, то идут по второму пути. При этом уменьшать можно только сопротивление, но не ток (это значило бы ограничить величину потребления электроэнергии) и не время (это значило бы отключить потребителей раньше, чем нужно).
А уменьшить сопротивление можно просто: либо вместо алюминиевых проводов взять медные, так как медь лучше проводит электричество, либо увеличить поперечное сечение проводов. Так обычно и поступают, руководствуясь нормами, где указаны предельные нагрузки для проводов каждого сечения.
Температуры различных частей одной и той же цепи
На рис. 11.1 изображена электрическая цепь, во всех частях которой, т. е. и через провода и через лампу, проходит один и тот же ток. Однако нить лампы раскалена до 2500 °C, а провода холодные. Почему?

 

 

Рис. 11.1. Схема цепи питания лампы накаливания

 

Потому что, во-первых, сопротивление нити велико (1936 Ом), а проводов мало (2,5 Ом). Значит, в нити выделяется в 1936: 2,5 = 775 раз больше теплоты. Во-вторых, масса нити мала и сосредоточена в небольшом пространстве, масса проводов значительно больше и провода растянуты на 100 м. Значит, нить охлаждается плохо, а провода хорошо. Одним словом, в одной и той же цепи могут быть участки, имеющие различные температуры.
Назад: Глава 11 АВТОМАТЫ ЗАЩИТЫ ОТ ТОКА КОРОТКОГО ЗАМЫКАНИЯ И ПЕРЕГРУЗКИ СЕТИ
Дальше: 11.2. Ввинчиваемые автоматические выключатели ПАР с резьбой Е-27