Книга: Профессиональные советы домашнему электрику
Назад: 7.1. Современное светодиодное освещение
Дальше: 7.3. Светодиодные лампы

7.2. Светодиоды: устройство, принцип действия, питание

Принцип действия светодиода
Светодиод — это полупроводниковый прибор с электронно-дырочным р-n переходом или контактом металл-полупроводник, генерирующий (при прохождении через него электрического тока) оптическое (видимое, УФ, ИК) излучение.
 Примечание.
Сокращенно светодиод имеет аббревиатуру СИД — светоизлучающий диод, а в английском варианте LED — light emitting diods. Будем называть его далее по тексту LED.
Напомню, что р-n-переход — это «кирпичик» полупроводниковой электронной техники, представляющий соединенные вместе два куска полупроводника с разными типами проводимости (один с избытком электронов — «n-тип», второй с избытком дырок — «р-тип»). Если к р-n переходу приложить «прямое смещение», т. е. подсоединить источник электрического тока плюсом к р-части, то через него потечет ток.
Нас интересует, что происходит после того, как через прямо смещенный р-n переход пошел ток, а именно момент рекомбинации (соединение) носителей электрического заряда — электронов и дырок, когда имеющие отрицательный заряд электроны «находят пристанище» в положительно заряженных ионах кристаллической решетки полупроводника. Оказывается, что такая рекомбинация может сопровождаться излучением, при этом в момент встречи электрона и дырки выделяется энергия в виде излучения кванта света — фотона.
Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой. Для этого полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.
Но чтобы соблюсти оба условия, однрго p-n-перехода в кристалле оказывается недостаточно. Приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры. За изучение этих структур российский физик Жорес Ж. И. Алферов (академик, директор Физико-технического института им. А. Ф. Иоффе, лауреат Ленинской премии) получил золотую медаль Американского физического общества за исследования гетероструктур на основе Ga1-xAlxAs еще в 70-х годах.
В 2000 г., когда стало ясно, как велико значение этих работ для развития науки и техники, насколько важны их практические применения для человечества, ему была присуждена Нобелевская премия.
Строение традиционных светодиодов
Самая распространенная конструкция светодиода — традиционный 5-миллиметровый корпус. Конечно, это не единственный вариант «упаковки» кристалла. На рис. 7.1 показано строение традиционного 5-миллиметрового светодиода.

 

 

Рис. 7.1. Строение традиционного 5-миллиметрового светодиода

 

Светодиод имеет два вывода — анод и катод. На катоде расположен алюминиевый параболический рефлектор (отражатель). Он внешне выглядит, как чашеобразное углубление, на дно которого помещен светоизлучающий кристалл. Активный элемент — полупроводниковый монокристалл — в большинстве современных 5-мм светодиодах используется в виде кубика (чипа) размерами 0,3x0,3x0,25 мм, содержащего р-n или гетеропереход и омические контакты.
Кристалл соединен с анодом при помощи перемычки из золотой проволоки. Оптически прозрачный полимерный корпус, являющийся одновременно фокусирующей линзой, вместе с рефлектором определяют угол излучения (диаграмму направленности) светодиода.
Строение мощных светодиодов
Изобретение синих светодиодов замкнуло «RGB круг» и сделало возможным получение светодиодов белого свечения. Существует несколько способов создания белых LED со своими достоинствами и недостатками. Рассмотрим основные из них.
Первый способ — смешение излучения LED трех или более цветов.
На рис. 7.2 показано получение белого света путем смешивания в определенной пропорции излучения красного, зеленого и синего светодиодов.

 

 

Рис. 7.2. Получение белого света путем смешивания излучения красного, зеленого и синего светодиодов

 

В принципе, такой способ должен быть наиболее эффективным. Для каждого из LED — красного, зеленого или синего можно выбрать значения тока, соответствующие максимуму его внешнего квантового выхода излучения. Но при этих J (ток LED) и V (рабочее напряжение LED) интенсивности каждого цвета не будут соответствовать значениям, необходимым для результирующих цветовых координат в области белого цвета.
Этого можно достигнуть, изменяя число диодов каждого цвета и составляя источник из многих диодов. Для практических применений этот способ встречает неудобства, поскольку нужно иметь несколько источников различного напряжения, много контактных вводов и устройства, смешивающие и фокусирующие свет от нескольких или более LED.
 Примечание.
Даже наиболее качественные RGB-светодиоды характеризуются тем, что получаемое при освещении ими поверхности световое пятно хотя и является по большей площади белым без каких-либо оттенков, но, тем не менее, по его краям все равно выделяются цветные полосы, имеющие форму дуг.
Обусловлено это тем, что кристаллы, излучающие синий, красный и зеленый свет, естественно, несколько разнесены друг от друга в светодиоде.
Второй способ — смешение синего излучения LED с излучением желто-зеленого люминофора.
На рис. 7.3 показано получение белого света с помощью кристалла синего светодиода и нанесенного на него слоя желтого люминофора. А на рис. 7.4 показано строение 5 мм светодиода, излучающего белый свет.

 

 

Рис. 7.3. Получение белого света с помощью кристалла синего светодиода и нанесенного на него слоя желтого люминофора

 

 

Рис. 7.4. Строение светодиода, излучающего белый свет

 

Этот способ наиболее прост и в настоящее время наиболее экономичный. Состав кристалла с гетероструктурами на основе InGaN/GaN подбирается так, м чтобы его спектр излучения соответствовал спектрам возбуждения люминофоров. Кристалл покрывается слоем геля с порошком люминофора таким образом, чтобы часть синего излучения возбуждала люминофор, а часть — проходила без поглощения.
Форма держателя, толщина слоя геля и форма пластикового купола рассчитываются и подбираются так, чтобы спектр имел белый цвет в нужном телесном угле. Сейчас исследуется около десятка различных люминофоров для белых LED.
Третий способ — смешение излучения трех люминофоров (красного, зеленого и синего), возбуждаемых ультрафиолетовым светодиодом.
На рис. 7.5 показано получение белого света с помощью ультра-фиолетового светодиода и RGB-люминофора.

 

 

Рис. 7.5. Получение белого света с помощью ультрафиолетового светодиода и RGB-люминофора

 

Этот способ использует принципы и люминофоры, хорошо разработанные в течение многих лет для люминесцентных ламп. Он требует только два контактных ввода на один излучатель.
Но этот способ связан с принципиальными потерями энергии при преобразовании света от диода в люминофорах. Кроме того, эффективность источника излучения уменьшается, т. к. разные люминофоры имеют разные спектры возбуждения люминесценции, не точно соответствующие УФ спектру излучения кристалла LED.
Индекс цветопередачи
Для источников белого цвета важны не только цветовые координаты суммарного спектра разных составляющих излучателя. Многолетние исследования люминесцентных ламп показали, что для цветовых характеристик необходимо учитывать отражение света от поверхностей с различным спектром отражения. Этот учет можно количественно обосновать, эмпирически введя индекс цветопередачи как среднее значение индексов цветопередачи от 8 стандартных цветовых поверхностей.
 Примечание.
Индекс цветопередачи, Ra — CRI (Color Rendering Index), характеризует насколько близки к «истинным» будут видны цвета объектов, при рассматривании их в свете LED. Под «истинными» понимаются цвета, сформированные с использованием тестового источника.
Ra принимает значения от 1 до 100:1 — наихудшая цветопередача; 100 — наилучшая. Индекс более 80 является хорошим показателем, более 90 — отличным.
Суммирование излучения LED более трех цветов дает возможность получить белый свет с индексом цветопередачи близким к 100 %.
Индекс цветопередачи для суммы голубого излучения LED с излучением желто-зеленого люминофора ниже, чем для других способов, но он может быть улучшен применением дополнительного оранжево-красного люминофора.
Для массового применения LED в обычном освещении необходимы психофизиологические исследования зрительного восприятия цвета светодиодов. Будущее покажет, в каких применениях целесообразно использовать белые LED каждого из четырех типов.
Мощные светодиоды Luxeon
Конструкции мощных светодиодов, например, Luxeon, основаны на следующих принципах:
♦ использованы высокоэффективные излучающие гетероструктуры в системах AlGalnP/GaAs. AlGalnP/GaP и InGaN (активная область гетероструктуры содержит либо одиночную, либо множественные квантовые ямы);
♦ излучающие кристаллы имеют увеличенную площадь S более 1 мм2 (вместо 0,05 мм2 в стандартных СИД диаметром 5 мм), увеличение площади кристалла направлено на увеличение рабочего тока, т. е. на увеличение светового потока и снижение теплового сопротивления кристалла;
♦ для увеличения светового потока в ряде конструкций применяются несколько кристаллов, соединенных как последовательно, так и параллельно-последовательно;
♦ в качестве кристаллодержателя для улучшения теплоотвода использованы мощные медные или алюминиевые основания (радиаторы);
♦ для сбора и преобразования бокового излучения кристаллов применены соответствующие рефлекторы;
♦ для эффективного вывода излучения и формирования заданной диаграммы направленности излучения, конструкции светодиодов содержат полимерную линзу, согласованную по размерам с отражателем бокового излучения, а также в некоторых конструкциях вторичную оптику.
Широкое распространение получили светодиоды типа Luxeon фирмы Lumileds Lighting. На рис. 7.6 показано строение мощного светодиода Luxeon.

 

 

Рис. 7.6. Строение мощного светодиода Luxeon

 

Подобную конструкцию имеет многие мощные недорогие светодиоды китайских производителей. Конструкция светодиода Luxeon обеспечивает эффективный отвод тепла от кристалла. Значительное количество энергии, подводимой к светодиоду, все еще расходуется на нагрев кристалла. Световая отдача белого светодиода Luxeon при номинальном прямом токе 0,3 А составляет 30–40 лм/Вт. Т. е. это уже больше светоотдачи классических и галогенных ламп накаливания.
Светодиоды Luxeon делятся по электрической мощности на следующие серии: Luxeon I — 1 Вт (однокристальные с прямым рабочим током 350 мА); Luxeon III — 3 Вт (однокристальные с прямым рабочим током 0,7–1 A); Luxeon V — 5 Вт (четырехкристальные с прямым рабочим током 700 мА).
Светодиоды Luxeon делятся по исполнению: Emitter — единичный светодиод (базовый элемент); Star — Emitter на теплоотводящем основании.
На рис. 7.7 показан внешний вид белого светодиода Luxeon Star (кристалл и рефлектор покрыты слоем желтого люминофора). А на рис. 7.8 показан Luxeon Side Emitting на основании Star. Благодаря специальной конической линзе (обратная линза) имеет круговую диаграмму излучения.
Обратите внимание, что Star/C — Emitter на квадратном теплоотводящем основании с разъемом, a Star/O — Emitter с интегрированной вторичной оптикой.

 

 

Рис. 7.7. Внешний вид белого светодиода Luxeon Star (кристалл и рефлектор покрыты слоем желтого люминофора)

 

 

Рис. 7.8. Внешний вид Luxeon Side Emitting на основании Star

 

На рис. 7.9 представлены слева направо Luxeon Star/O (с интегрированной вторичной оптикой), Luxeon Star и Luxeon Emitter.

 

 

Рис. 7.9. Внешний вид белого светодиода Luxeon Star

 

Ring 6, Ring 12 — модули, состоящие из 6 и 12 светодиодов Star/O, закрепленных на кольцевом основании, представлены на рис. 7.10.

 

 

Рис. 7.10. Внешний вид модулей Ring 6, Ring 12

 

Помимо Lumileds Lighting высокоэффективные (мощностью 1 Вт) светодиоды выпускают и другие известные фирмы производители, например, OSRAM Optosemiconductors выпускает серию Golden DRAGON™.
В табл. 7.1 приведены технические характеристики светодиодов белого света OSRAM, NICHIA, Edixeon мощностью 1 Вт.

 

 

Следующим этапом развития светодиодов Luxeon стали светодиоды серии Luxeon K2. Варианты их исполнения представлены на рис. 7.11 и рис. 7.12. А на рис. 7.13 приведено внутреннее строение светодиода Luxeon K2.

 

 

Рис. 7.11. Внешний вид светодиода серии Luxeon K2 на основании STAR

 

 

Рис. 7.12. Внешний вид светодиода серии Luxeon K2 (Emitting)

 

 

Рис. 7.13. Внутреннее строение светодиода серии Luxeon K2

 

Световой поток светодиодов серии Luxeon К2, например, у LXK2-PW14-V00 составляет 120 лм при прямом рабочем токе 1 А.
Современные высокоэффективные светодиоды
В мире ежегодно производится несколько миллиардов светодиодов. Бесспорным лидером по объемам производства в этой области стала КНР вместе с другими странами юго-восточной Азии.
Но в производстве качественных высокоэффективных светодиодов и кристаллов для них лидером является американская фирма Сrее (), которая первой начала делать светодиоды на подложке не из сапфира или кремния, а из карбида кремния (SiC), имеющего значительно меньшее тепловое сопротивление, используя в светоизлучающих кристаллах нитриды галлия и индия (рис. 7.14, рис. 7.15). Это позволило повысить световую отдачу белых светодиодов до 80-100 лм/Вт.

 

 

Рис 7. 14. Внешний вид светодиода серии XLampXR-ELED

 

 

Рис 7.15. Светодиод серии XLamp XR-E LED установлен на плате

 

Надо отметить, что сегодня на базе кристаллов Сrее выпускают свои светодиоды такие крупные производители как OSRAM Opto Semiconductor, Seoul Semiconductor, LedEngin, dison Opto Corporation, Avago Technology и многие другие. В свою очередь, не отстает от лидера и компания Lumileds (Philips), выпустив линейку светодиодов Luxeon® Rebel (рис. 7.16 — рис. 7.19).

 

 

Рис 7.16. Внешний вид светодиода Luxeon Rebel AllnGaN

 

 

Рис 7.17. Внешний вид светодиода Luxeon Rebel АllnGаР

 

 

Рис 7.18. Внутреннее строение светодиодов серии Luxeon Rebel (AllnGaN)

 

 

Рис 7.19. Внутреннее строение светодиодов серии Luxeon Rebel (AllnGaP)

 

Световой поток светодиодов Luxeon® Rebel в частности LXML-PWC1-0100 составляет 100 лм при токе 350 мА и 180 лм при токе 700 мА. Т. е. при токе 350 мА светоотдача составляет приблизительно 100 лм/Вт. Интересные свето диоды для местного и общего освещения выпускает и OSRAM Opto Semiconductor. Световой поток светодиода OSTAR составляет 1000 лм (рис. 7.20).

 

 

Рис 7.20. Внешний вид светодиода серии OSTAR
Питание светодиодов
Для того чтобы светодиодное освещение вошло в перечень традиционных источников света помимо увеличения световой отдачи и уменьшения стоимости самих светодиодов необходимо решить еще проблему специализированного электрического питания светодиодов и светодиодных модулей. Вести разговоры о том, что светодиоды будут работать 100 000 часов или хотя бы 10 000 часов без качественного электрического питания, нереально.
Во-первых, блок электропитания должен сохранять работоспособность в течение назначенного временного ресурса порядка 50 000 часов и более, обеспечивая при этом требуемые характеристики.
Во-вторых, питание должно быть стабилизированным по току (идеальный вариант — величина тока должна стабилизироваться по температурной зависимости светоизлучающего кристалла), иметь защиту от импульсов перенапряжения и обратной полярности.
В-третьих, цена всего вышеуказанного не должна существенно превышать стоимость светодиодного модуля.
Рассмотрим более подробно особенности питания белых светодиодов. Как известно, светодиод имеет нелинейную вольт-амперную характеристику с характерной «пяткой» на начальном участке (рис. 7.21).

 

 

Рис. 7.21. Вольтамперная характеристика светодиода белого свечения

 

Как мы видим, светодиод начинает светиться, если на него подано напряжение больше 2,7 В.
 Внимание.
При превышении порогового напряжения (выше 3 В) ток через светодиод начинает быстро расти и здесь требуется ограничить ток, стабилизировать его на определенном уровне.
Простейшим ограничителем тока через светодиод является резистор. Существует несколько вариантов схемотехнического включения светодиодов. Они делятся на схемы с параллельным, последовательным и смешанным включением.
Последовательное включение (рис. 7.22) преследует цель либо повысить мощность излучения, либо увеличить излучаемую поверхность.

 

 

Рис. 7.22. Схема последовательного включения светодиодов

 

Недостатками последовательного включения является:
♦ во-первых, с увеличением числа светодиодов увеличивается и напряжение питания;
♦ во-вторых, увеличение числа светодиодов понижает надежность системы, при выходе из строя одного из светодиодов перестают работать все последовательно включенные светодиоды.
При параллельном включении светодиодов через каждый излучатель протекает отдельный ток, задаваемый отдельным токозадающим резистором. На рис. 7.23 показана схема параллельного включения излучающих диодов.

 

 

Рис. 7.23. Схема параллельного включения светодиодов

 

Преимуществом параллельного включения является высокая надежность, так как при выходе из строя одного из излучателей остальные продолжают работать.
Недостатки параллельного включения светодиодов:
♦ каждый светодиод потребляет отдельный ток и повышается энергопотребление;
♦ увеличиваются потери на токозадающих резисторах.
Наиболее эффективным является смешанное (комбинированное) последовательно-параллельное включение, показанное на рис. 7.24. В этом случае число последовательно включенных излучателей ограничено напряжением питания, а число параллельных ветвей выбирается в зависимости от требуемой мощности.

 

 

Рис. 7.24. Схема последовательно-параллельного включения светодиодов

 

Смешанное соединение включает в себя положительные свойства вариантов параллельного и последовательного включения.
В связи с тем, что зрительный аппарат человека является инерционным, довольно часто при питании светодиодов используют импульсный ток. На рис. 7.25 показаны временные диаграммы импульсного тока.

 

 

Рис. 7.25. Временные диаграммы импульсного тока

 

Как уже упоминалось, резистор является элементом, ограничивающий ток, протекающий через светодиод. Но резистор удобно применять, если питающее напряжение постоянно. На практике часто случается, что напряжение не стабильно, например, напряжение аккумуляторной батареи уменьшается при ее разряде довольно в широких приделах. В этом случае широко применяют линейные стабилизаторы тока.
Простейший линейный стабилизатор тока можно собрать на широко распространенных микросхемах типа КР142ЕН12(А), LM317 (и их многочисленных аналогах), как показано на рис. 7.26.

 

 

Рис. 7.26. Схема простейшего линейного стабилизатора тока

 

Резистор R выбирается в пределах 0,25-125 Ом, при этом ток через светодиод определяется выражением
Ivd = 1,25/R.
Схема построения таких стабилизаторов тока отличается простотой (микросхема и один резистор), компактностью и надежностью. Надежность дополнительно обусловлена развитой системой защиты от перегрузок и перегрева, встроенной в микросхему стабилизатора.
Для стабилизации токов от 350 мА и выше можно использовать и более мощные микросхемы линейных регуляторов с малым падением напряжения серий 1083, 1084, 1085 различных производителей либо отечественные аналоги КР142 ЕН 22А / 24А/ 26А.
Но у линейных стабилизаторов тока есть существенные недостатки: низкий КПД; большие потери сильный нагрев при регулировке больших токов.
Назад: 7.1. Современное светодиодное освещение
Дальше: 7.3. Светодиодные лампы