Книга: Профессиональные советы домашнему электрику
Назад: 7.2. Светодиоды: устройство, принцип действия, питание
Дальше: 7.4. Светодиодные ленты

7.3. Светодиодные лампы

Назначение и примеры исполнения
Светодиодная лампа — осветительный прибор, устанавливаемый в существующий светильник, изначально предназначенный как для установки сменных светодиодных ламп, так и для установки ламп другого типа (люминесцентных, накаливания, галогенных), возможно, с некоторой доработкой.
В настоящее время выпускаются светодиодные лампы практически под все существующие типы цоколей. Лампы выпускаются в основном невысокой мощности (до 20 Вт) и предназначены для установки в бытовые осветительные устройства — настольные светильники, потолочные светильники, бра — как быстрая замена менее экономичных традиционных ламп без изменения дизайна и конструкции. Примеры исполнения и конструктивные элементы светодиодных ламп представлены на рис. 7.27.

 

 

Рис. 7.27. Светодиодные лампы:
а — примеры исполнения; б — конструктивные элементы

 

Производители указывают напряжение питания, потребляемую мощность и цоколя, указывают оттенок белого света (цветовую температуру), срок службы лампы и мощность аналогичной лампы накаливания.
Достоинства и недостатки светодиодных ламп
Достоинства светодиодных ламп:
♦ светодиодная лампа безопасна в работе, т. к. она не требует высокого напряжения. При этом наибольшая температура светодиода и ограждающей арматуры не превысит 60 °C;
♦ наименьшее, по сравнению с любыми другими типами бытовых ламп, потребление электроэнергии (табл. 7.2);

 

 

♦ высокая световая отдача, порядка 120 лм/Вт (светоотдача ламп накаливания составляет 10–24 лм/Вт, а люминесцентных ламп — от 60 до 100 лм/Вт);
♦ наивысший, по сравнению с любыми другими лампами освещения, срок службы (40000-50000 часов и более), при условии качественного построения самой светодиодной лампы, применении в ее изготовлении высококачественных материалов, а также соблюдении заданного теплового режима;
♦ получение различных характеристик спектра без использования светофильтров, т. е. по аналогии с лампами накаливания;
♦ прочность и безопасность для пользователей. Светодиодная лампа при случайном падении не разобьется и не будет повреждена, т. е. осколков стекла, характерных для подобной ситуации с любой другой осветительной лампой, не будет. Ее элементы не содержат сколько-нибудь опасных компонентов химического происхождения, присутствующих, к примеру, в люминесцентных лампах;
♦ в спектре излучения светодиодов отсутствует значительные инфракрасное и ультрафиолетовое излучения;
♦ срок службы не зависит от количества включений и отключений. У других ламп количество включений-отключений серьезно влияет на продолжительность их службы;
♦ светодиодные лампы могут работать при изменении напряжения от 80 до 230 В.
 Примечание.
Конечно, при снижении напряжения интенсивность свечения измениться, но лампа гореть будет.
Недостатки светодиодных ламп:
♦ наивысшая цена среди аналогичных осветительных ламп;
♦ потребность в отводящем тепло радиаторе;
♦ в отсутствии конденсатора, выравнивающего световой поток светодиодов, наблюдается заметная пульсация света;
♦ световой спектр, генерируемый светодиодами, монохромен и существенно отличается от естественного солнечного освещения. Для смягчения монохромного светового излучения требуется люминофоры специального состава;
♦ генерируемый световой поток узко направлен и требует установки нескольких разнонаправленных ламп или рассеивателя света, однако применение последнего существенно снижает интенсивность освещения.
Основные элементы светодиодной лампы
Рассмотрим устройство светодиодной лампы. Основные элементы современной светодиодной лампы представлены на рис. 7.28.

 

 

Рис. 7.28. Устройство светодиодной лампы с цоколем Е27

 

Светодиодная лампа состоит из рассеивателя, собственно светодиодов, платы, на которую они монтируются, радиатора для охлаждения светодиодов, драйвера, вентиляционных отверстий для циркуляции воздуха, цоколя. Рассмотрим основные элементы современной светодиодной лампы подробнее.
Пускатель-балласт (драйвер)
Это первый и главный компонент светодиодной лампы. Он заключен в пластиковый корпус с вентиляционными отверстиями. Представляет собой электронную схему, служащую для преобразования входного напряжения к напряжению, пригодному для использования в светодиодной лампе.
Типовая схема включения драйвера светодиодной лампы представлена на рис. 7.29.

 

 

Рис. 7.29. Типовая схема включения драйвера светодиодной лампы

 

Дроссели и трансформаторы в этом устройстве использовать практически не представляется возможным из-за их больших размеров, несоизмеримых с размерами корпуса лампы (хотя бывают исключения). Поэтому он содержит мост, мощные конденсаторы, причем, более мощные, чем в схеме балласта люминесцентных ламп.
Драйвер задает определенную частоту для питающего напряжения и тока светодиода. Эта частота питания важна, во-первых, для того чтобы задать определенную яркость свечения, т. к. яркость свечения для светодиода задается «правильно» именно не изменением напряжения, а определенной частотой питания. Во-вторых, это ограничение частоты через драйвер позволят мощному светодиоду дольше «деградировать» (терять выходной световой поток), то есть светодиод проработает дольше.
Типовая принципиальная схема драйвера светодиодной лампы представлена на рис. 7.30.

 

 

Рис. 7.30. Типовая принципиальная схема драйвера светодиодной лампы

 

Долговечность светодиодной лампы во многом определяется наличием и качеством драйвера.
Следует отметить, что требуются вентиляционные отверстия в корпусе балласта. Ведь тепло, вырабатываемое диодами в светодиодных лампах, направлено не наружу, а внутрь корпуса лампы.
 Примечание.
Срок службы любой светодиодной лампы зависит с количеством вентиляционных отверстий в корпусе, надежности конденсаторов и стабилитронов, выравнивающих напряжение в случае его перепадов.
Внешний вид драйвера светодиодной лампы представлен на рис. 7.31.

 

 

Рис. 7.31. Внешний вид драйвера светодиодной лампы.
Алюминиевый радиатор
В отличие от обычных ламп накаливания, светодиоды не излучают тепло в окружающие пространство, а проводят его в направлении от р-n перехода к теплоотводу в корпусе светодиода (или вывод светодиода, или специальная металлическая пластинка). Поэтому процесс отвода тепла более сложен и специфичен.
Путь отвода тепла состоит из множества тепловых сопротивлений:
♦ «р-n переход — > теплоотвод корпуса»;
♦ «теплоотвод корпуса —» печатная плата»;
♦ «печатная плата — > радиатор»;
♦ «радиатор — > окружающая среда».
 Примечание.
Вследствие этого, использование мощных светодиодов связано с высокой вероятностью чрезмерного увеличения температуры перехода, от которой напрямую зависят срок службы, надежность и световые характеристики светодиода.
Данные исследований говорят, что примерно 65–85 % электроэнергии при работе светодиода преобразуется в тепло. Однако, при условии соблюдения рекомендованных производителем светодиодов тепловых режимов, срок службы светодиода может достигать 10 лет.
 Внимание.
Если нарушить тепловой режим (обычно это работа с температурой перехода более 120–125 °C), срок службы светодиода может упасть в 10 раз! А при грубом несоблюдении рекомендованных тепловых режимов, например, при включении светодиодов типа emitter без радиатора в течение более 5–7 с, светодиод может выйти из строя уже во время первого включения.
Повышение температуры перехода, кроме того, приводит к снижению яркости свечения и смещению рабочей длины волны. Так же полимер, из которого изготовлен корпус светодиода, нельзя нагревать выше определенного предела, т. к. из-за разности коэффициентов линейного расширения деталей светодиода (контактов, рамки, кристалла, материала линзы), возможен отрыв контактного соединения. Поэтому очень важно максимально рассеять выделяемое светодиодом тепло.
Немаловажный компонент светодиодной лампы — радиатор (рис. 7.32).

 

 

Рис. 7.32. Внешний вид радиатора светодиодной лампы

 

Обычно он изготовлен из алюминия и имеет сложную форму. Его выступающие ребра могут быть расположены вдоль и по спирали, что улучшает отвод тепла. Радиаторы видны и на фото ламп, представленных ранее на рис. 7.27.
Размеры светодиодов слишком малы и не достаточны для самостоятельного отвода тепла, выделяемого им при работе — чем мощнее светодиодная лампа, тем большего размера и площади ей необходим радиатор. Соответственно, внушительный размер алюминиевого радиатора влияет на себестоимость лампы, к тому же мощную светодиодную лампу будет трудно или невозможно установить в обычные светильники — она в них не поместится.
Плата, на которой установлены светодиоды
В большинстве случаев плата выполнена из алюминия. На сторону, обращенную к радиатору, нанесена термопаста, отводящая тепло. Почти 90 % излучения тепла от светодиодов приходится на алюминиевую плату, в которой они установлены. Примеры плат приведены на рис. 7.33.

 

 

Рис. 7.33. Платы для установки светодиодов:
а — типа «Звезда»; б — круглая, для установки 7 светодиодов

 

Платы под сверхяркие светодиоды обычно покрываются черной или белой паяльной маской, чтобы дополнительно увеличить светопоглощение или светоотражение соответственно, что благоприятно сказывается и на температурных режимах и на дизайне светильников.
Медная фольга — используется стандартная для производства печатных плат медная фольга толщиной от 35-350 мкм.
Диэлектрик-препрег — стеклоткань, пропитанная эпоксидными смолами толщиной 50-150 мкм. В качестве препрега может использоваться как обычная эпоксидная стеклоткань FR-4, так и специальный теплопроводящий состав (T-preg), который обладает лучшими теплопроводными и электроизоляционными свойствами. Он представляет собой специальную химически стойкую структуру с высокой теплопроводностью толщиной 75-200 мкм, изготовленного из особого диэлектрика — смеси полимера со специальной керамикой.
Полимер выбирается исходя из его диэлектрических свойств, тогда как керамический наполнитель предназначен для улучшения теплопроводности, благодаря чему материал имеет и отличные диэлектрические свойства, и очень низкое тепловое сопротивление. В платах с металлическим основанием слой диэлектрика — ключевой, поскольку соединяет медь с нижним, металлическим (алюминиевым или медным) базовым, который служит радиатором для всей печатной платы и выполняет функцию проводника тепла от верхнего к нижнему слою — к металлическому основанию.
В конструкции плат с металлическим основанием важную роль играет коэффициент температурного расширения (КТР) материалов подложки. Использование материалов с большим КТР при высоких температурах приводит к возникновению внутренних механических напряжений в структуре.
 Примечание.
Поэтому для высокотемпературных применений, где данный параметр критичен, используют материалы с подложкой из низкоуглеродистой стали (толщиной 1 и 2,3 мм) с малым КТР.
Хотя медь обладает лучшими теплопроводными свойствами, алюминий все-таки является самым распространенным материалом для плат с металлическим основанием, так как он более дешевый и, что немаловажно, легкий материал.
Теплопроводность применяемых алюминиевых подложек:
♦ алюминий 1100 (аналог АД) — 222 Вт/мК;
♦ алюминий 5052 (аналог АМг2,5) — 138 Вт/мК;
♦ алюминий 6061 (аналог АД33) — 167 Вт/мК.
На сегодняшний день несколько крупных компаний-производителей термопроводящих электроизолирующих материалов выпускают базовые материалы для изготовления печатных плат с металлическим основанием: Bergquist (США), Totking (Китай), Ruikai (Китай), Laird (Thermagon) (США), Denka (Япония).
Широкий перечень поставляемых материалов с различными характеристиками способны удовлетворить самый взыскательный вкус разработчиков и технологов радиоэлектронной аппаратуры и сулит экономический выигрыш как непосредственно на этапе производства, так и последующей эксплуатации изделий. Сами материалы отвечают требованиям коммерческих и военных стандартов и могут применяться практически в любой области: от бытовых устройств до военной техники.
Большинство технологических процессов изготовления печатных плат с металлическим основанием, таких как травление, нанесение защитной маски, нанесения защитного металлического покрытия (HASL), маркировка, аналогичны процессам изготовления традиционных плат из FR-4 и отличаются только режимами механической обработки контура и сверловки.
Печатные платы на металлическом основании не ограничиваются применением для мощных светодиодов и могут так же использоваться в любом изделии, где важен теплоотвод и габариты. Применение таких плат существенно упрощает проектирование радиоэлектронных устройств, особенно высокомощных, поскольку отвод тепла перестает существенно зависеть от взаимного расположения элементов и свободной площади платы вокруг них: теплота рассеивается через подложку. Исчезает необходимость в дополнительных теплоотводах — радиаторах, шинах и т. п. В итоге возрастает степень интеграции элементов на плате, снижаются ее габариты.
Печатные платы с металлическим основанием имеют много преимуществ по сравнению с обычными платами:
♦ рассеивают тепло без использования дополнительных радиаторов, специальных теплопроводящих паст;
♦ снижают/устраняют необходимость в вентиляторах принудительного воздушного охлаждения;
♦ добавляют механическую жесткость изделию;
♦ повышают степень интеграции элементов высокомощной аппаратуры, работающей с большими токами и напряжениями при высокой рабочей температуре;
♦ уменьшают эффект теплового стресса всех компонентов, тем самым увеличивая продолжительности жизни элементов и долговечности изделия.
Охлаждающие свойства таких плат позволяют проще организовать отвод тепла, что благоприятно сказывается на себестоимости изделий. За счет любой конфигурации контура плат, позволяют значительно сэкономить место в устройстве. Платы имеют отличные характеристики по электромагнитной совместимости и экранированию. Использование таких плат, улучшает надежность устройств, наработку на отказ.
Возможность объединения на одной печатной плате множества светодиодов, монтаж компонентов с помощью стандартных автоматизированных технологий пайки, малая теплоотдача — все это в комплексе позволяет создавать компактные высокоэффективные источники света.
Светодиоды
Обычно используется от пяти до многих десятков светодиодов. Это полупроводниковые приборы, преобразующие электрический ток в световое излучение. Любой светодиод состоит из не проводящей ток подложки, на которую уложен полупроводниковый кристалл. Оба этих элемента заключены в корпус с выводами контактов с одной и линзой из пластика с другой стороны.
Свободное пространство между линзой и кристаллом заполнено бесцветным силиконом, конструкция светодиода закреплена на алюминиевом основании, отводящем тепло и придающем светодиоду большую жесткость.
От качества светодиодов зависит световой поток, генерируемый ими. При построении лампы на дешевых светодиодах ее светоотдача понижается до максимальных 100 лм/Вт и становится равной люминесцентным лампам, т. е. утрачивается важное преимущество светодиодной лампы.
Рассеивающая свет оптика (линзы, рассеиватели)
Для достижения нужного результата применяют различные оптические системы, получая как точечный источник, так и лампу, которая светит во все стороны. Оптика закреплена на внутреннем кольце из алюминия. Производится из матового пластика, служит для равномерного рассеивания светового пучка от светодиодов. Практически не греется.
 Примечание.
Задача оптической системы, используемой в паре со светодиодом — как можно более рационально распределить световой поток в пространстве.
Правильно подобранная оптика позволяет существенно увеличить плотность светового потока диода и более точно приспособить его работу для решаемой технической задачи.
На сегодняшний день представленные на рынке оптические системы охватывают достаточно широкий спектр применения светодиода: от точечной индикации до приборов основного освещения.
 Примечание.
Оптика позволяет выстроить не только круговой, но и протяженный эллиптический фронт излучения.
Оптические системы делятся на два основных типа: линзовые и отражательные. Все они создают различные диаграммы направленности излучения в пространстве. Параметр, отображаемый диаграммами, есть эффективный телесный угол светового потока, то есть угол, внутри которого распределено не менее 50 % всего излучения.
Типовые варианты диаграмм направленности:
♦ узкая диаграмма с углом эффективного излучения 5-20° (рис. 7.34, а);
♦ средняя диаграмма с утлом эффективного излучения 20–50° (рис. 7.34, б);
♦ широкая диаграмма с углом эффективного излучения от 50° (рис. 7.34, в).

 

 

Рис. 7.34. Типовые варианты диаграмм направленности оптических систем:
а — узкая диаграмма с углом эффективного излучения 5-20°; б — средняя диаграмма с углом эффективного излучения 20–50°; в — широкая диаграмма с углом эффективного излучения более 50°
 Примечание.
При использовании оптических систем с более широкой диаграммой направленности сила света будет ниже, снизится и освещенность.
Происходит это из-за рассредоточения светового потока на сравнительно большой площади. Следовательно, при выборе следует учитывать зависимость между площадью освещаемой поверхности и значением силы света системы.
Значение силы света при применении одного светодиода недостаточно, разумно применить системы с пятью и более светодиодами.
Важным параметром также является собирательная способность систем. Это отношение светового потока внутри угла эффективного излучения ко всему световому потоку, прошедшему через систему. Выраженная в процентах, эта величина часто обозначается как оптическая эффективность. Хорошим значением эффективности следует считать величины от 75 % и выше.
У линзовых систем, как правило, они меньше. Это связано с тем, что свет, проходя через линзу, дважды пересекает границу раздела двух оптических сред. Поэтому, выбирая систему с узкой или средней направленностью, следует помнить о том, что отражатель может быть эффективнее линзы.
Цоколь
Это стандартный элемент любой лампы, предназначен для вкручивания в патрон светильника (резьбовые цоколи — Ехх) или для вставки в штырьковую систему быстрого соединения ламп (штырьковые цоколи — Gxx).
Резьбовые цоколи — Ехх. Входят в резьбовую систему быстрого соединения ламп, разработанную Томасом Эдисоном в 1909 году:
♦ цоколь Е14 — обозначение Е14 соответствует диаметру резьбы в 14 мм;
♦ цоколь Е27 — обозначение Е27 соответствует диаметру резьбы в 27 мм;
♦ цоколь Е40 — обозначение Е40 соответствует диаметру резьбы в 40 мм.
Штырьковые цоколи — Gxx входят в штырьковую систему быстрого соединения ламп. Цифра указывает на расстояние между центрами штырьков лампы.
Цоколь G4 — распространенный тип цоколя для миниатюрных галогенных ламп декоративного назначения. Расстояние между контактами равно 4,00 мм. Применяется в настольных лампах, люстрах, декоративных светильниках. Распространены также цоколи GU4 и GY4, являющиеся модификациями цоколя G4 для разных стран и имеющие незначительные отклонения в диаметре штырьков, расстоянии между ними. Данный тип цоколя рассчитан на напряжение 12 В.
Цоколь GU5,3 — широко применяемый тип цоколя для галогенных мульти-фацетных рефлекторов (MR) и их светодиодных аналогов. Расстояние между контактами равно 5,33 мм. Данный тип цоколя рассчитан на напряжение 12 В, но в России также широко получили распространение лампы на 220 В.
Цоколь G9 — распространенный тип цоколя для галогенных ламп под декоративные светильники. Имеет две скобы-контакта, расстояние между центрами которых составляет 9,00 мм. Данный тип цоколя рассчитан на напряжение 12 В.
Цоколь GU10 — представляет собой двухштырьковый разъем с утолщениями на конце контактов для поворотного соединения с патроном согласно стандарту IEC (англ. сокр. от International Electrotechnical Commission — международная электротехническая комиссия, МЭК). Расстояние между центрами контактов равно 10 мм. Данный тип цоколя рассчитан на напряжение 220 В.
Цоколь G13 — тип цоколя, применяемый для люминесцентных и светодиодных линейных ламп Т8. Расстояние между контактами составляет 13,00 мм.
Цоколь G53 — тип цоколя, распространенный для подключения ламп-рефлекторов большого диаметра, например AR111. Соединительными контактами являются две Г-образные скобы. Расстояние между контактами равно 53,00 мм. Данный тип соединения также относится к группе штырьковых. Рассчитан на напряжение 12 В.
Цоколь GX53 — представляет собой двухштырьковый разъем с утолщениями на конце контактов для поворотного соединения с патроном. Расстояние между центрами контактов равно 53,00 мм. Данный тип цоколя применяется для плоских круглых ламп под встраиваемые светильники.
Светодиодные лампы фирмы Shine Technologies Limited
Для примера модельного ряда светодиодных ламп рассмотрим светодиодные лампы фирмы Shine Technologies Limited. Shine® является зарегистрированной торговой маркой компании Shine Technologies Limited. Это высокотехнологичные энергосберегающие продукты для освещения, в том числе и несколько классов светодиодных ламп и светильников с ними, светодиодных панелей, светодиодных прожекторов, предназначенных для различных случаев использования. Производятся так же и источники питания для всех изделий, указанных выше.
Направления деятельности компании Shine Technologies Limited (Гонконг) — производство и поставка энергоэффективных источников света для профессионального освещения; декоративного освещения; архитектурного освещения; ландшафтного освещения; промышленного освещения; дорожного освещения; освещения специального назначения.
Светодиодные лампы Shine на основе диодов Сrее представлены на рис. 7.35.
Серия Bullet (рис. 7.35, а). Светодиодные лампы Bullet имеют 5 сверхярких светодиодов и мощный радиатор. Предназначены для общего освещения в открытых светильниках.
Пример. Bullet 8W Е27. Мощность: 8 Вт. Цоколь: Е27. Цветовая температура: 5000 К. Напряжение: 220 В. Эквивалент лампы накаливания: 75 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Серия Wave (рис. 7.35, б). Светодиодные лампы Wave строением своего корпуса напоминают о волновой природе. Предназначены для общего освещения в открытых светильниках.
Пример. Wave 8W Е27. Мощность: 8 Вт. Цоколь: Е27. Цветовая температура: 5000 К. Напряжение: 220 В. Эквивалент лампы накаливания: 75 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Серия Volcano (рис. 7.35, в) — это образец минимализма в линейке мощных светодиодных ламп. Форма радиатора ламп этой серии напоминает извергающийся вулкан. Предназначены для общего освещения в открытых светильниках.
Пример. Volcano 4.3W Е27 Мощность: 8 Вт. Цоколь: Е27. Цветовая температура: 5000 К. Напряжение: 220 В. Эквивалент лампы накаливания: 40 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Пример. Volcano 4.3W Е27 Мощность: 8 Вт. Цоколь: Е27. Цветовая температура: 2700 К. Напряжение: 220 В. Эквивалент лампы накаливания: 40 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Пример. Volcano 6.3W Е27 Мощность: 8 Вт. Цоколь: Е27. Цветовая температура: 2700 К. Напряжение: 220 В. Эквивалент лампы накаливания: 60 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.

 

 

Рис. 7.35. Габаритные размеры светодиодных ламп Shine на основе диодов Сrее:
а — серия Bullet; б — серия Wave; в — серия Volcano; г — серия Smart; д — серия Arena

 

Серия Smart (Риc. 7.35, г). Светодиодные лампы Smart — альтернатива галогенным лампам с цоколем GU10. Простая и надежная фиксация, маленькие размеры и высокая мощность дают все основания полагать, что лампы этой модели должны быть в каждом доме. Применяются в открытых светильниках направленного света для подвесных потолков. Идеально подходят для освещения коридоров, холлов и галерей, подсветки витрин, предметов искусства.
Пример. Smart 4.2W GU10; 20°. Мощность: 4,2 Вт. Цоколь: GU10. Цветовая температура: 5000 К. Напряжение: 220 В. Эквивалент лампы накаливания: 35 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Пример. Smart 4.2W GU10; 50°. Мощность: 4,2 Вт. Цоколь: GU10. Цветовая температура: 5000 К. Напряжение: 220 В. Эквивалент лампы накаливания: 35 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Серия Arena 12 В и 220 В (рис. 7.35, д). Это серия создана для замены галогенных ламп типа MR 16. Применяются в открытых светильниках направленного света для подвесных потолков. Идеально подходят для освещения коридоров, холлов и галерей, подсветки витрин, предметов искусства.
Пример. Arena 4.2W GU5.3 12V; 20°. Мощность: 4,2 Вт. Цоколь: GU5.3. Цветовая температура: 5000 К. Напряжение: 12 В. Эквивалент лампы накаливания: 35 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Пример. Arena 4.2W GU5.3 12V; 20°. Мощность: 4,2 Вт. Цоколь: GU5.3. Цветовая температура: 2700 К. Напряжение: 12 В. Эквивалент лампы накаливания: 35 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Пример. Arena 4.2W GU5.3 12V; 50°. Мощность: 4,2 Вт. Цоколь: GU5.3. Цветовая температура: 5000 К. Напряжение: 12 В. Эквивалент лампы накаливания: 35 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Пример. Arena 4.2W GU5.3 12V; 50°. Мощность: 4,2 Вт. Цоколь: GU5.3. Цветовая температура: 2700 К. Напряжение: 12 В. Эквивалент лампы накаливания: 35 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Пример. Arena 4.2W GU5.3 220V; 20°. Мощность: 4,2 Вт. Цоколь: GU5.3. Цветовая температура: 5000 К. Напряжение: 220 В. Эквивалент лампы накаливания: 35 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Пример. Arena 4.2W GU5.3 220V; 20°. Мощность: 4,2 Вт. Цоколь: GU5.3. Цветовая температура: 2700 К. Напряжение: 220 В. Эквивалент лампы накаливания: 35 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Пример. Arena 4.2W GU5.3 220V; 50°. Мощность: 4,2 Вт. Цоколь: GU5.3. Цветовая температура: 5000 К. Напряжение: 220 В. Эквивалент лампы накаливания: 35 Вт. Срок службы: 40000 часов. Индекс цветопередачи: Ra >= 80.
Рассмотрим теперь светодиодные лампы Shine профессионального назначения.
Серия AR111 G53. Данная серия ламп (рис. 7.36) предназначена для акцентной подсветки элементов интерьера кафе, ресторанов, галерей и выставок. Конструкция лампы позволяет правильно расставлять акценты в помещении и создавать освещенность исключительно на требуемом участке экспозиции. Лампа зарекомендовала себя на многих европейских выставках. Исполнение лампы AR111 в цоколе G53 и GU10 позволяют использовать ее как в карданных, так и в подвесных светильниках.

 

 

Рис. 7.36. Габаритные размеры светодиодных ламп Shine профессионального назначения (серия AR111G53)

 

Пример. Мощность: 10 Вт. Цоколь: G53. Цветовая температура: 5000 К. Напряжение: 12 В. Эквивалент лампы накаливания: 50 Вт. Угол пучка: 12°. Срок службы: 40000 часов. Световая сила: 11000 кд. Источник света: Sharp ZENIGATA. Индекс цветопередачи: Ra >= 80.
Пример. Мощность: 10 Вт. Цоколь: G53. Цветовая температура: 5000 К. Напряжение: 12 В. Эквивалент лампы накаливания: 50 Вт. Угол пучка: 35°. Срок службы: 40000 часов. Световая сила: 11000 кд. Источник света: Sharp ZENIGATA. Индекс цветопередачи: Ra >= 80.
Серия MR16.Лампа Shine MR16 — является самой маленькой в серии ламп Shine® Professional. Благодаря фацетно-параболоидному отражателю КПД этой лампы >95 %, что делает ее одной из самых мощных на рынке светодиодных ламп MR16. Применение: точечная акцентная подсветка, потолочные светильники.
Пример. Мощность: 4 Вт. Цветовая температура: 5000 К. Напряжение: 12 В. Тип цоколя: GU5.3. Эквивалент лампы накаливания: 40 Вт. Источник света: Sharp ZENIGATA. Световая сила: 250 кд. Срок службы: 40000 часов. Угол пучка: 35°. Индекс цветопередачи: Ra >= 80.
Рассмотрим декоративные светодиодные лампы Shine.

 

 

Рис. 7.37. Внешний вид и габаритные размеры светодиодных ламп Shine декоративных:
а — серия Crystal В Е14; б — серия Crystal В Е27; в — серия Crystal С 4W Е14; г — серия Crystal C5 WE14

 

Серия Crystal В. Строение радиатора и расположение светодиодных чипов позволяют добиться широкого угла расхождения светового пучка, что делает Crystal идеальным источником света для декоративных светильников и люстр. Лампы с прозрачным стеклом, в первую очередь, подойдут для люстр и светильников закрытого типа. Лампы со стеклом матового типа могут быть использованы абсолютно в любых светильниках и люстрах.
Пример. Crystal В 4W Е14. Мощность: 4 Вт. Цветовая температура: 3000 К. Напряжение: 220 В. Тип цоколя: Е14. Эквивалент лампы накаливания: 40 Вт. Источник света: Lextar5630. Срок службы: 40000 часов. Световой поток светильника: 330 лм. Индекс цветопередачи: Ra >= 85. Возможность диммирования: есть.
Пример. Crystal В 4W Е14. Мощность: 4 Вт. Цветовая температура: 4000 К. Напряжение: 220 В. Тип цоколя: Е14. Эквивалент лампы накаливания: 40 Вт. Источник света: Lextar5630. Срок службы: 40000 часов. Световой поток светильника: 360 лм. Индекс цветопередачи: Ra >= 85. Возможность диммирования: есть.
Пример. Crystal 4W Е27. Мощность: 4 Вт. Цветовая температура: 3000 К. Напряжение: 220 В. Тип цоколя: Е27. Эквивалент лампы накаливания: 40 Вт. Источник света: Lextar5630. Срок службы: 40000 часов. Световой поток светильника: 330 лм. Индекс цветопередачи: Ra >= 85. Возможность диммирования: есть.
Пример. Crystal 4W Е27. Мощность: 4 Вт. Цветовая температура: 4000 К. Напряжение: 220 В. Тип цоколя: Е27. Эквивалент лампы накаливания: 40 Вт. Источник света: Lextar5630. Срок службы: 40000 часов. Световой поток светильника: 360 лм. Индекс цветопередачи: Ra >= 85. Возможность диммирования: есть.
Серия Crystal С. Строение радиатора и расположение светодиодных чипов позволяют добиться широкого угла расхождения светового пучка, что делает Crystal идеальным источником света для декоративных светильников и люстр. Лампы с прозрачным стеклом, в первую очередь, подойдут для люстр и светильников закрытого типа. Лампы со стеклом матового типа могут быть использованы абсолютно в любых светильниках и люстрах.
Пример. Crystal С 4W Е14. Мощность: 4 Вт. Цветовая температура: 3000 К. Напряжение: 220 В. Тип цоколя: Е14. Эквивалент лампы накаливания: 40 Вт. Источник света: Lextar5630. Срок службы: 40000 часов. Световой поток светильника: 330 лм. Индекс цветопередачи: Ra > =85. Возможность диммирования: есть.
Пример. Crystal С 4W Е14. Мощность: 4 Вт. Цветовая температура: 4000 К. Напряжение: 220 В. Тип цоколя: Е14. Эквивалент лампы накаливания: 40 Вт. Источник света: Lextar5630. Срок службы: 40000 часов. Световой поток светильника: 360 лм. Индекс цветопередачи: Ra > = 85. Возможность диммирования: есть.
Пример. Crystal С 5W Е14. Мощность: 5 Вт. Цветовая температура: 2700 К. Напряжение: 220 В. Тип цоколя: Е14. Эквивалент лампы накаливания: 40 Вт. Срок службы: 25000 часов Угол пучка: 300°. Индекс цветопередачи: Ra > = 85. Световая эффективность: 94 лм/Вт.
 Примечание.
Существует еще большое количество серий светодиодных ламп этого производителя. Их характеристики можно найти в Интернете, например, на сайте .
Теперь рассмотрим светодиодные панели Shine. Ультратонкие светодиодные панели Shine® — это соединение новаторских инженерных идей с изящными дизайнерскими решениями. Светодиодные панели Shine® за счет высоких показателей равномерности и качественных характеристик освещения создадут непревзойденную цветосветовую среду в любом помещении. Это комфортное освещение премиум-класса. Идеально подойдут для формирования комфортных условий в офисах и общественных зданиях. Могут быть либо встраиваться в потолки различных конфигураций, либо размещаться на стенах горизонтально.
Пример. Светодиодные панели 595 мм. Мощность: 40 Вт. Цветовая температура: 4200 К. Напряжение: 220 В. Источник света: Epistar. Срок службы: 40000 часов. Световой поток светильника: 2450 лм. Индекс цветопередачи: Ra >= 80. Вес: 3 кг

 

 

Рис. 7.38. Внешний вид и габаритные размеры светодиодной панели 595 мм
Светодиодные лампы фирмы Philips
Компания Philips представляет инновационные продукты — высококачественные светодиодные лампы серий Econic, Accent, Novallure. Светодиодные лампы сочетают в себе широкие возможности энергосберегающих технологий и превосходное качество света.
Лампы серий Econic, Accent, Novallure универсальны — они прекрасно подходят для стандартных цоколей и могут использоваться как для общего, так и для акцентного, декоративного освещения. При этом они потребляют совсем мало электроэнергии и работают в 25 раз дольше по сравнению с лампами накаливания. Благодаря этому светодиодные источники света окупаются всего за 18 месяцев, а ваш вклад в защиту окружающей среды начинается с первого дня их использования.
Светодиодные лампы Philips сочетают в себе отличные качественные характеристики и великолепный дизайн. Эти лампы уже были номинированы на несколько дизайнерских премий. Econic, Accent и Novallure от Philips — это уникальные лампы для общего и акцентного освещения различных форм и цветов. Теперь вы можете сделать освещение вашего дома экологичным и эстетичным. Характеристики светодиодных ламп фирмы Philips представлены в табл. 7.3.

 

 

Светодиодные лампы фирмы OSRAM
OSRAM AG — высокотехнологическая немецкая компания в сфере освещения, с 1978 года является дочерним предприятием концерна Siemens AG. Сейчас входит в сектор «Промышленность» концерна Siemens и является одним из двух ведущих в мире производителей светотехнической продукции. Штаб-квартира — в Мюнхене. Название OSRAM образовано слиянием частей названия металлов осмий (OSmium) и вольфрам (wolfRAM).
На 2010 финансовый год оборот компании составил 4,7 миллиарда евро. 70 % продаж OSRAM составляет энергоэффективная продукция, 5 % — издержки на инновационные исследования и развитие. OSRAM имеет 48 точек производства в 17 странах мира.
Характеристики светодиодных ламп фирмы OSRAM представлены в табл. 7.4.

 

 

 

 

Назад: 7.2. Светодиоды: устройство, принцип действия, питание
Дальше: 7.4. Светодиодные ленты