Пока, Флиппер!
В животном мире у нас большую симпатию вызывают дельфины, возможно, потому, что, как мы помним, им вместе с певчими птицами и человеком приходится учиться звукообразованию, и, таким образом, у них есть нечто, в широком смысле похожее на речь.
Кроме того, дельфины слывут особенно умными животными. Это не очень просто проверить и доказать, ведь уровень интеллекта определяют с помощью тестов. Как гласит классическая фраза, «интеллект – это то, что измеряют тестом на интеллект». Нет общего определения, которое не зависело бы от проверяемых показателей. Это составляет проблему, даже когда сравнивают просто очень разных людей, а тем более если вы решились на сравнение между видами. В конце концов, это не наша тема, но интеллект связан с памятью и способностью к обучению, а значит, здесь недалеко до гиппокампа. Интеллект – это точно не его функция, но нельзя исключить гиппокамп из ее рассмотрения.
У страдавшего эпилепсией H.M. интеллект был нормальный, даже чуть выше среднего, но, несмотря на это, в повседневной жизни он полностью зависел от поддержки окружающих. Это говорит только о том, что в быту интеллектом называют не всегда то же самое, что под этим понятием подразумевают в науке.
В любом случае удивительно в дельфинах то, что гиппокамп у них крошечный. Южноафриканский нейроанатом Пол Мангер провел крупнейшее межвидовое сравнение нейрогенеза взрослых в гиппокампе у дельфинов и многих других видов. Хотя в его распоряжении были только косвенные маркеры, такие как даблкортин, поскольку эксперименты с БДУ в естественной среде обитания проводить очень сложно, общая картина его результатов непротиворечива. Он обнаружил признаки нейрогенеза взрослых в гиппокампе всех исследованных видов млекопитающих (включая летучих мышей, о которых ранее шли некоторые дискуссии), кроме морских, таких как киты и дельфины.
Почему это так, совершенно непонятно. Причем вообще не важно, значит ли это, что дельфины не такие умные, как о них говорят. Но результат, конечно, любопытный. В первую очередь интересно, что абсолютно все остальные млекопитающие демонстрируют нейрогенез взрослых в зубчатой извилине. Значит, этот процесс на самом деле не такой уж экзотический и свойственен не только человеку.
Может быть, жизнь морских млекопитающих в корне отличается от нашей, и они сталкиваются с принципиально другими когнитивными задачами – настолько, что зубчатая извилина и нейрогенез взрослых им не нужны? Этот был бы очень сомнительный аргумент, потому что, вероятно, дельфинам и китам новые нейроны в гиппокампе тоже пригодились бы, если бы они у них были. Просто в их случае эволюция пошла по такому пути, что сегодня им это недоступно. И все же это различие поразительно и, возможно, указывает, для решения каких задач нейрогенез взрослых имеет особую ценность.
Ирмгард Амрайн, нейроанатом из Цюриха, очень глубоко погрузилась в этот вопрос и пытается с помощью чрезвычайно сложных исследований на диких мышах и других живущих на воле грызунах, лисах и летучих мышах показать, для чего нейрогенез взрослых нужен за пределами лаборатории. Одним из важнейших выводов из ее работ может быть то, что новые нервные клетки нельзя объяснить простой моделью. Различия между видами огромны, по-видимому, практически у каждого из них свои особенности. Значит, здесь тоже есть пластичность. Хотя, возможно, с этим стоило бы повременить.
Итак, здесь мы подошли к той части истории, когда нейрогенезу взрослых в общем и целом нашлось место. В следующей главе речь пойдет о том, может ли все же за этим стоять еще что-то большее. Ученые долгое время игнорировали это явление, несмотря на то что его значение впоследствии оказалось бесспорным. Может быть, в других местах мы были еще более слепы? Что, если нейрогенез взрослых в обонятельном мозге и гиппокампе – это только верхушка айсберга? Не узнаем ли мы еще больше при ближайшем рассмотрении?