Книга: Революция в голове. Как новые нервные клетки омолаживают мозг
Назад: Переносы
Дальше: 5 Морской конек в голове

Мозгу «полезно» работать

Фраза о том, что мозгу полезно работать, уже стала общим местом, она кажется такой же избитой, как схожая с ней пословица – «под лежачий камень вода не течет». Интуитивно это понятно. Но на самом деле совсем не так просто объяснить, почему мозг должен поддаваться тренировке. Данных огромное количество, целые книги. Многие детали неясны, но считается бесспорным, что мозгу нужно работать. Кто им не пользуется, теряет его. По статистике, хорошее образование и умственная деятельность служат определенной защитой от деменции.
Мышечная тренировка, во-первых, не дает мышцам слабеть, во-вторых, укрепляет имеющиеся мышечные волокна, в-третьих, способствует росту новых. Мускул – относительно предсказуемая система, и любой может непосредственно убедиться в том, как укрепляются предплечья, когда носишь маленьких детей по квартире на руках, и как болят мышцы после выходных, проведенных с коробками для переезда. Даже сравнительно небольшая тренировка вызывает видимые изменения.
В случае мозга же никакой мышечной боли и никаких видимых изменений нет. Можно добиться измеримого улучшения его функций, что легко показать, например, с помощью игровых программ для тренировки мозга в интернете, но воздействует ли это на сам мозг? В бихевиоризме такой вопрос считали несущественным, а аналогия с компьютером подсказывала нам, что каким-то образом (да, но каким?) должна была бы меняться эффективность программного обеспечения.
Публикации об обогащенной среде и ее воздействии на мозг связаны с этим. Если вспомнить принцип Хебба и его экспериментальное подтверждение, результаты очень убедительны. Любое обучение вызывает микроскопические структурные изменения на уровне синапсов и отростков нейронов, вдобавок это неизбежно ведет к изменениям в более крупных структурных элементах мозга. Это установили уже Мариан Даймонд и ее коллеги: кора становится настолько толще, что это можно измерить, как и прирост глиальных клеток в некоторых местах. На уровне связей, которые образуют нервные волокна, подобные структурные изменения тоже хорошо описаны. Таким образом, фундаментальную зависимость можно прекрасно обосновать экспериментами.
Но сами нервные клетки здесь оставались без внимания. Ничто не указывало на то, что мозг может формировать новые нейроны, чтобы повысить свою работоспособность, так же как в мышце растут новые волокна, чтобы она стала сильнее. Это, конечно, в большой степени остается верно и сегодня – но уже не абсолютно. Ведь, как нам теперь известно, в гиппокампе под действием опыта и деятельности образуются новые нервные клетки.
Будь то опыты на животных или нет, самые убедительные данные о пластичности мозга, которую вызывают опыт и деятельность, напрямую переносят на человека.
При этом идут большие дискуссии о том, что вообще такое обогащенная среда для человека. Для нас, в отличие от животных, это очень относительное понятие: одни испытывают перегрузку от стимуляции, которую другие едва ли заметят. Недостаточно точно определено, какие стимулы и какое поведение имеют значение. Разложить мир на единичные стимулы и учебные задания не так просто, как представляли себе бихевиористы. Кроме того, отдельные проявления поведения, будь то проактивные или возникающие как реакция на среду, невозможно отделить от общего эффекта. Так что в практических выводах из этих исследований часто присутствует некоторая неопределенность.
Самое простое – в итоге говорить об отдельном, имеющем вещественное представление параметре, который можно измерить и продемонстрировать. Этим объясняется популярность опытов с магнитно-резонансной томографией в данной области и выбор несложных, четких в планировании экспериментов, чтобы сразу можно было исключить из рассмотрения все запутанное устройство «реальной жизни». При этом говорят о редукционизме – одном из важнейших принципов, в котором кроется секрет успеха естественных наук. Впрочем, редукционизм – это палка о двух концах, поскольку, следуя ему, из условий эксперимента исключают как раз самое интересное.
Тем временем легендарное исследование провели на лондонских таксистах: в 2000 году Элеанор Магуайр и Ричард Фраковяк показали, что у кэбменов срок работы в такси коррелирует с размерами гиппокампа. Это объясняли тем, что до эпохи GPS-навигаторов успех в этой профессии определялся способностью выучить сложнейшую карту лондонских улиц. Размеры врат памяти (гиппокампа) отражали колоссальные усилия по обучению (см. рис. 19 на вклейке).
Мы с Богданом Драгански и Арне Мэем, которые тогда вместе работали в Регенсбургском университете, задумались о том, можно ли наблюдать такой же эффект при обучении, не связанном напрямую с пространственной деятельностью. Они исследовали студентов-медиков до и после подготовки к первой большой аттестации – «физикуму». Результаты были очень похожи на те, что получены в случае с таксистами: гиппокамп тоже увеличивался в размере. С другой стороны, известно, что, например, депрессия, при которой часто оказывается серьезно нарушена способность к обучению и запоминанию, связана с уменьшением размеров гиппокампа.
Опять гиппокамп – врата памяти!
Впрочем, аналогичные структурные изменения происходят и в других областях мозга. Конечно, их нельзя объяснить появлением новых нейронов. Да и в гиппокампе объем тканей, который мог появиться благодаря им, слишком мал, чтобы его можно было разглядеть на МРТ. Должно быть, здесь происходит что-то еще, и пока у науки нет точного ответа, что именно. Зато верно обратное: без сомнения, нейрогенез взрослых протекает в области, которая обладает высокой приспособляемостью и пластичностью. Пластичность в гиппокампе настолько велика, что, с одной стороны, ее можно измерить на МРТ, а с другой – она даже включает в себя образование новых нервных клеток. В следующей главе мы подробнее рассмотрим эту особую область мозга.
Назад: Переносы
Дальше: 5 Морской конек в голове