Как найти новые нервные клетки
Тем не менее в основе старого и нового методов лежит один и тот же принцип. При клеточном делении – а именно это подразумевается, когда говорят, что «рождается» клетка, – требуется удвоить содержащийся в ее ядре генетический материал, то есть ДНК, чтобы обе дочерние клетки получили его неизменным и в одинаковом количестве. Для этого клетка формирует его точную копию, а затем, в ходе умопомрачительно сложного, но удивительно надежного и эффективного процесса, копия и оригинал распределяются между двумя дочерними клетками, которые образовались при делении. Весь процесс клеточного деления, от подготовки до того момента, когда клетки окончательно разделились, называется «клеточным циклом», в нем выделяют несколько стадий. После короткой подготовительной стадии клетка вступает в продолжительную S-фазу. «S» здесь означает синтез, в ходе которого готовится, то есть синтезируется, новый генетический материал и появляется копия генетической информации. Затем, после короткой промежуточной фазы (G2), формируется необходимый для деления аппарат, и обе копии генетического материала перемещаются к двум полюсам клетки. Это M-фаза, где «M» означает митоз. В этот момент возникает очень характерная картина. Уже классические методы окраски, известные с XIX века (к этой части предыстории мы еще вернемся), были основаны на том, что скрученная ДНК связывается с основным красителем, в результате чего можно увидеть некое типичное распределение хромосом. Картина эта настолько специфическая, что делящиеся клетки, которые находятся в данной фазе цикла, очень легко распознать.
С другой стороны, митоз по сравнению с продолжительностью клеточного цикла в целом занимает относительно мало времени. Это значительно понижает шансы застать делящуюся клетку именно в фазе митоза. Препарат на предметном стекле подобен моментальному снимку, он фиксирует клетки в определенной стадии цикла. На препарате мозговой ткани млекопитающего увидеть митоз практически невозможно. Из этого анатомы XIX и начала XX века и заключили, что клетки мозга не делятся в принципе.
Чтобы синтезировать новую ДНК, в S-фазе клетке необходимо сырье. ДНК состоит из четырех всем известных оснований – аденина (сокращенно A), тимидина (T), гуанина (G) и цитозина (C), способных соединяться друг с другом в пары, причем A только с T, а C только с G. Эта парная структура также лежит в основе формирования копии ДНК. Исходная двойная цепочка, в которой А всегда связан с T, T с A, C с G, а G с C, раскрывается, как застежка-молния, и получаются две одинарные цепи. Затем эта четырехбуквенная последовательность в каждой цепочке достраивается соответствующими парными основаниями. К T присоединяется A, там, где находится A, появляется T. C связывается с G, а G с C. В результате получаются две новые двойные цепочки, каждая из которых состоит из одной старой и одной новой одинарной цепи.
Суть метода состоит в том, чтобы одну из «букв»-оснований (для этого выбрали T) в лабораторных условиях пометить низкоактивным радиоактивным изотопом водорода, в результате чего это вещество начинает испускать радиоактивное излучение и, таким образом, постоянно сообщает о своем присутствии. Клетку в избытке снабжают меченым основанием T, например введя его в кровеносную систему. Учитывая, что меченый T встречается значительно чаще, чем обычный, который образует сама клетка, первый будет с большей вероятностью встраиваться в новые цепочки, и они станут слаборадиоактивны. Если затем нанести на препарат фотоэмульсию, она потемнеет в тех и только в тех местах, где клетки содержат ДНК с радиоактивной меткой. Радиоактивная метка может находиться исключительно в клетках, появившихся в результате клеточного деления именно тогда, когда был введен меченый тимидин. Таким образом, мы точно знаем, когда произошло деление материнской клетки, давшей начало выявленным потемневшим клеткам.
Если меченой оказалась нервная клетка, то известно время ее образования путем клеточного деления. Если этот момент относится ко взрослому возрасту, значит, мы имеем дело с нейрогенезом взрослых!
Однако определить на основании одного только внешнего вида, относится ли клетка к числу нейронов, не так уж просто. В нашем случае это критически важно, ведь если в данном вопросе возникают сомнения, аргументация в пользу нейрогенеза взрослых теряет всякую силу.
На самом деле именно этот момент в экспериментах Альтмана и вызвал наибольшее количество сомнений. Мог ли исследователь быть уверен, что речь действительно идет о нейронах? Не мог, хотя новообразованные клетки гиппокампа принадлежат к популяции клеток очень характерного внешнего вида. Другим веским аргументом критики был открытый вопрос: какая же клетка, собственно, должна была разделиться, чтобы образовались новые нервные клетки? Ведь никаких подтверждений того, что нейроны могут делиться, по-прежнему не было и нет. Что же это тогда за клеточный тип? Альтман совершенно верно предположил, что существует «некий вид клеток-предшественниц», но о таком типе в тканях головного мозга ничего не было известно, и прошло еще почти 30 лет, прежде чем в 1992 году данное предположение удалось обосновать. Именно тогда Брент Рейнольдс и Самюэль Вейс из канадского Университета Калгари впервые описали стволовые клетки взрослого мозга – а это и есть те клетки, из которых образуются новые нейроны.
Рейнольдс и Вейс открыли стволовые клетки, которые содержатся в стенках наполненных жидкостью мозговых полостей, так называемых желудочков мозга, и отвечают за нейрогенез взрослых в обонятельной луковице. Стволовые клетки гиппокампа были впервые описаны вскоре после этого рабочей группой Фреда Гейджа. Ясодхара Рэй первой выделила их из гиппокампа плода, то есть еще нерожденного организма, и размножила, вырастив клеточную культуру. Ее коллега Тео Палмер, ныне профессор Стэнфордского университета, что находится к югу от Сан-Франциско, в 1995 году опубликовал описание аналогичного процесса в мозге взрослых крыс.
Последнее открытие имело эпохальное значение, но мир научной прессы часто бывает очень несправедлив. Престижные журналы отклонили статью Палмера как недостаточно новаторскую. Его опередили Рейнольдс и Вейс, а также его собственная коллега Рэй. Но именно в его работе был найден, вероятно, важнейший в конечном счете элемент – в первую очередь если говорить о применимости этих данных к человеку. То, что можно было предполагать после исследований Рейнольдса и Вейса, теперь было установлено точно: существуют стволовые клетки, способные производить в гиппокампе крыс новые нейроны. Это и были те самые активно делящиеся клетки, которые Альтман пометил авторадиографическим методом.
Метод, использующий излучение тимидина, отличается трудоемкостью; сегодня к нему также неохотно прибегают из-за радиоактивности, пусть даже очень слабой. Требования высокие, с другой стороны, он сложен в применении. С его помощью можно получить лишь черно-белое изображение; к тому же невозможно использовать его одновременно с современными флуоресцентными методами, когда различные маркеры в клетках дают разный цвет, что позволяет с очень высокой точностью определить клеточный тип. Для этого требуется «холодный» процесс, в ходе которого можно было бы маркировать флуоресцентными красителями в том числе новообразованный генетический материал. Хотя такой процесс и был разработан в 80-е годы, в сферу изучения нейрогенеза взрослых он проник лишь еще через много лет после фундаментальных исследований Ноттебома – тот все еще опирался на тимидиновый метод. Первая работа, в которой с помощью современной методики, с одной стороны, четко пометили новые клетки, а с другой – маркировали их принадлежность к нейронам, относится к 1996 году. Эта методика носит название используемого в ней вещества, бромдезоксиуридина, сокращенно БДУ. БДУ – аналог тимидина, в том числе в ДНК он может замещать основание T. Иными словами, он очень похож на тимидин, вступает с ним в конкуренцию и встраивается вместо него в новые цепочки ДНК, но это сходство не бесконечно. Особые белки иммунной системы, называемые антителами, способны отличить БДУ от тимидина. Если пометить такое, распознающее только БДУ, антитело, флуоресцентным красителем, то под флуоресцентным микроскопом все клетки, содержащие новообразованную ДНК, будут светиться – в отличие от других, старых клеток, содержащих лишь обычный тимидин (см. рис. 4 на вклейке).
Этот метод с использованием БДУ до сих пор остается основным в исследовании новых нервных клеток. В то же время сегодня с целью подтвердить и более точно описать нейрогенез взрослых разработано множество других методик. В науке это происходит постоянно: она стремится постичь одно и то же явление разными, независимыми друг от друга методами. Только их независимость и позволяет гарантировать, что мы не находимся в плену всеобщего заблуждения.
Благодаря такому методологическому разнообразию мы можем считать существование нейрогенеза у взрослых млекопитающих, включая человека, установленным фактом. Однако до этого пришлось пройти долгий путь.