Книга: Гюйгенс. Волновая теория света. В погоне за лучом
Назад: David Blanco Laserna Гюйгенс Волновая теория света. В погоне за лучом
Дальше: ГЛАВА 1 Геометрия света

Введение

Если на долю каждой нации должен выпасть золотой век, то для Нидерландов таким периодом стало XVII столетие, причем золота в это время голландцам досталось гораздо больше, чем жителям других государств. На крошечной граничащей с морем территории наблюдалась такая концентрация блестящих умов, что она опровергала все законы статистики. Нидерландцы преуспевали в самых разных искусствах и ремеслах, от живописи до оружейного дела, от торговли до навигации, от строительства до литературы и науки. Большинство из них обладало природным любопытством, которое помогало прокладывать мостики от одного вида деятельности к другому, как будто жители страны и в самом деле ощущали себя частью грандиозного совместного проекта.
Философ Барух Спиноза шлифовал линзы для телескопов и микроскопов. Считается, что Антони ван Левенгук, один из основоположников научной микроскопии, был моделью для картин Яна Вермеера «Географ» и «Астроном», а также продемонстрировал художнику возможности камеры-обскуры. Инженер Симон Стевин писал о политике, а государственный деятель Ян де Витт был еще и математиком. Все они смогли раскрыть свои таланты благодаря религиозной терпимости, которая распространялась на знаменитых иностранцев, ставших жертвами цензуры на родине, — таких как Декарт. В Нидерландах печаталось чуть меньше четверти всех книг, издаваемых в Европе.
В этот прекрасный период весь мир, казалось, вращался вокруг Амстердама, Гааги и Делфта, однако Христиан Гюйгенс много лет провел вдалеке от родины — преимущественно в Париже. С ранних лет его учили, как вести себя на большой сцене, которой является весь мир, и в конце концов он затмил на ней своего отца, хотя тот тоже был звездой первой величины. Константин Гюйгенс стал воплощением идеального придворного, о котором мечтал Бальдассаре Кастильоне[1 Итальянский писатель, автор трактата «О придворном». — Примеч. ред. ]. Это был полиглот, музыкант, одаренный поэт и преданный дипломат при дворе принцев Оранских; с одной стороны, его преданность опиралась на чувство долга Константина, а с другой — была надежным источником дохода. Пытливый ум Константина не делал различий между точными и гуманитарными науками. В своей библиотеке в Гааге он собрал около 3 тысяч томов, десятая часть которых была посвящена физике и математике. Благодаря разностороннему образованию Константин Гюйгенс и в зрелом возрасте был жаден до любых знаний — это качество он передал и своему сыну Христиану. Стремление последнего к непознанному способствовало также завязыванию интереснейших контактов, и в полном собрании сочинений Христиана Гюйгенса почти половину всех томов занимает переписка. Гюйгенс-младший совершенно не походил на смиренного мудреца, в одиночестве корпящего над трактатами. Напротив, он общался с самыми выдающимися представителями научного сообщества, обсуждал свои идеи с Исааком Ньютоном, Готфридом Лейбницем, Робертом Бойлем, Мареном Мерсенном, маркизом Лопиталем, Робертом Гуком и Антони ван Левенгуком. Разветвленная сеть личных контактов, развитие средств коммуникации, появление первых научных журналов и организаций, таких как Лондонское королевское общество и Французская академия наук, которую ученый некоторое время возглавлял, позволяли ему всегда быть в курсе последних открытий.

 

Решающая научная битва произошла в небесной сфере, и главным ее оружием был телескоп. Первые заслуги Гюйгенса связаны с продолжением дела Галилея и решением задач, возникших в результате наблюдений за Сатурном. В самых простых изображениях звездного неба мы видим три символа: окружности, обозначающие спутники или планеты, многоугольники с разным количеством углов — звезды, и круги вокруг кольца. Этот последний символ появился позже остальных и был введен именно Гюйгенсом в 1656 году. Разрешение его телескопа не позволяло различить кольца Сатурна, и заслуга ученого состоит в том, что он смог эти кольца представить, ведомый лишь собственным опытом и знаниями. Также Гюйгенс открыл первый спутник этой планеты, Титан, и с удивительной точностью установил масштаб Солнечной системы. Его открытия были плодом длительных теоретических изысканий. Гюйгенс изучал небо при помощи своих телескопов, но прежде чем сконструировать приборы, он сформулировал законы геометрической оптики, определяющие траекторию лучей света, проходящих через ряд линз. Эта теоретическая основа помогла ученому максимально использовать возможности инструмента. Он разработал составные линзы, корректировавшие сферическую аберрацию, и микрометр, превращавший телескоп в измерительный инструмент. В 1660-х годах к Гюйгенсу пришло понимание, что его знания о такой материи, как свет, на первый взгляд довольно глубокие, на самом деле оставались поверхностными и описательными. Тогда ученый начал исследовать природу этого явления. Его подход открыл дорогу весьма смелой теории, которая сегодня считается зачатком волновой модели света и на основе которой смогли оформиться более сложные концепции Френеля, Юнга и Максвелла. Гюйгенс считал, что свет — это волна, которая расходится кругами (на самом деле сферическими волнами). Возбуждение частиц света передается глазу наблюдателя посредством длинной цепи столкновений между частицами материи. Так называемый принцип Гюйгенса стал примером тонкого математического подхода к физическим явлениям и использовался в качестве теоретической основы для понимания загадочного поведения исландского шпата. Эта разновидность прозрачного кальцита, обнаруженная в рудниках Хельгустадира, демонстрирует феномен двойного лучепреломления: проходя через минерал, луч света раздваивается.
Хотя исследования Сатурна и света обеспечили ученому долгую славу, больше всего сам Гюйгенс гордился созданием маятниковых часов. Об этом приборе начинал задумываться еще Галилей, но ему не удалось сконструировать достаточно надежный механизм. Гюйгенс рассмотрел вопрос со всех точек зрения; он не ограничился чисто механическим подходом, а провел настоящие инновационные исследования в области физики и математики.
Часто этого ученого называют последователем Декарта, но сам он не приветствовал бы такое сравнение. Если бы Гюйгенс мог выбирать учителей, то предпочел бы Галилея или Архимеда. Декарт строил великолепные обобщенные системы, но обращал мало внимания на детали, которые так привлекали Гюйгенса. Как говорил Лейбниц, ученик этого голландского ученого, «он не выказывал ни малейшего увлечения метафизикой». Разумеется, в ранней юности Гюйгенс восхищался автором «Рассуждения о методе»: «Я был убежден, что каждый раз, как я сталкивался с какой-либо трудностью, это была моя вина, потому что я не понял его мысль». Однако вскоре он изменил подход и начал рассматривать работы Декарта более критически, так что многие труды Гюйгенса можно считать опровержением идей французского философа, например его исследование столкновений или геометрической оптики. В конце своих дней он пришел к отрицанию идей Декарта: «Сейчас я не нахожу во всей его физике, метафизике или в его утверждениях по метеорологии ничего, что я мог бы принять за истину». Если бы Гюйгенс и смог прийти к согласию с Декартом, то оно касалось бы отрицания ньютоновского всемирного притяжения и поиска альтернативной механики, объяснявшей притяжение между телами посредством столкновений частиц материи.
Для Гюйгенса понять явление означало изложить его на языке математики. В этом он превзошел самого Галилея, и затмить нидерландского ученого никто не мог вплоть до Ньютона. В эпоху, когда еще не существовало границ между чистой и прикладной математикой, Гюйгенс был физиком в своей математике и математиком в своей физике. В его геометрии видна любовь к механике, свойственная Архимеду, который взвешивал на воображаемых весах фигуры, площадь которых хотел определить. Можно сказать, что одним глазом Гюйгенс смотрел на мир через призму физики, а другим — через призму математики, и на основе этих данных разум ученого формировал трехмерное изображение. Его восприятие оптики как дисциплины, «в которой геометрия применяется к материи», хорошо иллюстрирует подход Гюйгенса к физике. Ум ученого искал окружности, кривые и углы в волнах света и в сердце часовых механизмов. Принцип Гюйгенса, на котором основывается его интерпретация оптики, можно рассматривать и как геометрическое построение. Незадолго до того, как голландец начал научную карьеру, Декарт узаконил союз между алгеброй и геометрией. Гюйгенс использовал связь между этими дисциплинами и стал первопроходцем в применении уравнений. Многие приписывают ему честь создания первой физической формулы в 1652 году.
Высказывание Галилея о том, что книга природы написана на языке математики, стало довольно известным. Но для того чтобы точно описывать все более сложные явления, необходимо было расширить словарь, унаследованный от греков и арабов. В XVII веке Ньютон и Лейбниц, развивая математический анализ, создали необходимые для такого описания понятия. Эта революция застала 60-летнего Гюйгенса врасплох. Он с недоверием наблюдал за необратимыми изменениями математики: ученый к тому времени уже нашел собственный способ математического описания Вселенной, и ему не нужны были ни помощники, ни готовые формулы.
В трактате «Искусство взвешивания» Симон Стевин взывал к прагматизму: «Размышления о принципах любого искусства есть бесплодное усилие, когда его цель не направлена на действие». Гюйгенс был полностью согласен с этим высказыванием. Он, как Галилей и Ньютон, принадлежал к ученым, не возводившим преград между кабинетом и мастерской или лабораторией. Они не только создавали теории, но также конструировали инструменты и совершенствовали механизмы, чтобы получить более точные результаты наблюдений. Гюйгенс был большим поклонником научных приспособлений — телескопов, микроскопов, насосов, часов... Он считал их одновременно и посредниками в исследовании мира, и примерами удивительного применения физических законов. Ученый внес большой вклад в создание научного оборудования, что в не меньшей мере способствовало развитию науки, чем сформулированные им законы и принципы.
Гюйгенс — прообраз современного ученого, причем не столько в работах, сколько в подходе, в убеждении, что наука развивается благодаря приближениям. Он не стремился открыть Истину, а просто хотел создать работающие модели: «В области физики не существует точных доказательств, а причины можно узнать только через последствия, делать предположения — только на основе опыта или известных явлений и стараться проверить, соответствуют ли этим предположениям другие явления». К этому ученый добавлял: «Однако отсутствие доказательств в физике не должно приводить нас к выводу, что все в ней одинаково туманно. В любом случае мы должны знать степень вероятности явления, которая зависит от числа экспериментов, подтверждающих наши гипотезы».
Гюйгенс был пленником своего перфекционизма. Можно сказать, что современники видели лишь одну восьмую часть его достижений — остальные семь восьмых работы, словно айсберг, скрывались в темной глубине. Ученый оставил неоднозначное наследство, и многие его сокровища были по достоинству оценены лишь историками, поэтому авторитет Гюйгенса при жизни был не так высок, как того заслуживало количество и качество его открытий. Он десятилетиями собирал новые результаты в области оптики и не публиковал их, считая свои открытия промежуточными этапами на пути к поставленной цели — созданию телескопа, дающего идеальное изображение. Ученый был так требователен к своим работам, что многие его достижения стали известны только после его смерти, уже устарев.

 

1629 14 апреля в Гааге у дипломата и поэта Константина Гюйгенса и Сюзанны ван Барле рождается сын Христиан.
1645 Изучает право и математику в Лейденском университете.
1647 Продолжает дипломатическое образование в колледже Collegium Auriacum в Бреде.
1652 Гюйгенс выводит законы, управляющие упругими столкновениями, а также начинает исследования в области геометрической оптики, которые в итоге позволят улучшить телескоп с помощью окуляра Гюйгенса, микрометра и диафрагмы.
1655 В марте Гюйгенс открывает первый спутник Сатурна, Титан, а через несколько месяцев приходит к выводу, что планета окружена кольцом.
1657 Публикует свою первую книгу по теории вероятностей, вдохновленную перепиской Ферма и Паскаля.
1659 Издает трактат Systema Satumium («Система Сатурна»), в котором излагает астрономические открытия и приводит удивительно точные расчеты относительных размеров планет и всей Солнечной системы. В ходе работы над маятниковыми часами открывает таутохронность циклоиды, а также устанавливает, как движется тело под воздействием центростремительной силы.
1666 Переезжает в Париж и возглавляет Французскую академию наук, только что основанную Людовиком XIV.
1673 Публикует работу Horologium oscillatorium («Маятниковые часы»), в которой содержится полное описание его приспособления; проектирует часы с разжимающейся пружиной. Первенство этого открытия оспаривает также английский ученый Роберт Гук.
1676 Начинает изучать природу света, что позже приведет к созданию знаменитого принципа, названного именем ученого и объясняющего двойное лучепреломление кристалла исландского шпата.
1681 Возвращается в Гаагу.
1689 Едет в Лондон, где знакомится с Исааком Ньютоном. В последние годы пишет работу «Космотеорос», в которой исследует возможности существования жизни на других планетах. Спорит с немецким философом Готфридом Лейбницем о роли математического анализа.
1690 Публикует «Трактат о свете», в котором излагает свое видение природы света и делает наброски волновой теории, позже развитой Томасом Юнгом и Огюстеном Френелем.
1695 9 июля умирает в Гааге в возрасте 66 лет.

 

Назад: David Blanco Laserna Гюйгенс Волновая теория света. В погоне за лучом
Дальше: ГЛАВА 1 Геометрия света