Книга: Число, пришедшее с холода. Когда математика становится приключением
Назад: Бесконечная игра в вопросы и ответы
Дальше: Всемогущество вместо всеведения

Программа Гильберта

Какими бы странными и причудливыми ни казались нам сценарии «отеля Гильберта», «остановки Гильберта» и «гардероба Гильберта», они были очень важны для самого Гильберта, стремившегося внести ясность в эти сценарии, ибо в них отражен его метод вычислений, связанных с числами с бесконечным десятичным представлением. Вспомним, что величиной
π = 3,141 592 653 589 793 238 462 643 383 279 502 88…
надо овладеть во всей ее полноте и цельности. Самым демоническим в этом представлении числа π являются три точки … после первых 35 цифр после запятой. Как нам понимать эти точки? Самый правдоподобный ответ заключается в том, что π имеет не 35 знаков после запятой; этих знаков после запятой в данном числе бесконечное множество. Выше приведены 35 первых знаков. Все остальные — а их бесконечно много! — представлены коротким символом многоточия ….
«Но тогда позволительно задать вопрос, — скажет скептик в ответ на вышеприведенные рассуждения, — встречается ли, например, цифра ноль, которая в последовательности первых тридцати пяти цифр после запятой встречается всего один раз, бесчисленное множество раз в бесконечной записи числа π».
«Совершенно верно, — ответил бы на это Гильберт, — и в тех десятичных представлениях числа π, которые были до сих пор вычислены, цифра ноль встречается с той же частотой, что и все остальные цифры: в последовательности из 100 знаков после запятой цифра ноль встречается десять раз, в последовательности из тысячи знаков — сто раз, в последовательности из десяти тысяч знаков — тысячу раз и так далее».
«Пока число π вычислено до конечного числа знаков после запятой, — вставляет свое слово скептик. — Для остальных знаков — а их бесчисленное множество, то есть намного больше, чем вычисленных, — вы этого не знаете».
«Признаю, что вы правы. Для всего бесконечного множества знаков после запятой у меня в настоящий момент нет ответа. Но я тем не менее убежден, что либо верным является утверждение о том, что в десятичном представлении числа π цифра ноль встречается бесконечное число раз, либо верно утверждение о том, что число ноль встречается в этом представлении конечное число раз».
«И какое же из этих двух утверждений верно?»
«Определенно, что одно из них. — Настойчивость скептика начинает действовать Гильберту на нервы. — Но поверьте мне: передо мной стоит намного более важная задача, нежели углубляться в нерешаемую в принципе задачу о количестве цифры ноль в десятичном представлении числа π».
«То есть для вас речь идет о том, возможно ли в принципе ответить на этот вопрос?»
«Совершенно верно. Любой допустимый вопрос — а ваш вопрос, несмотря на то что он совершенно неинтересен, является допустимым — должен иметь ответ, ибо в математике нет места понятию “ignorabimus”».
«Но откуда вы черпаете свою убежденность? Как вы можете ее обосновать?»
Этот диалог скептика с Гильбертом вымышлен. Однако последний заданный скептиком вопрос побудил Гильберта наметить программу, оформленную в виде доклада, озаглавленного «О бесконечном», с которым он 4 июня 1925 г. выступил на съезде математиков в Мюнстере. Цель программы заключалась в том, чтобы «заменить работу с бесконечными величинами конечными процессами, позволяющими достичь тех же результатов, то есть пользоваться таким же ходом доказательств и такими же методами вывода формул и теорем». Что это значит?
Гильберт видит три способа поставить вопрос о том, сколько нулей содержится в десятичном представлении числа
π = 3,141 592 653 589 793 238 462 643 383 279 502 88….
Возможно наивное предложение, которое вполне мог бы сделать администратор из «отеля Гильберта»: представить себе прохождение всей бесконечной последовательности знаков числа π после запятой и при этом считать все появляющиеся по ходу просмотра цифры ноль. Таким способом можно сразу получить ответ.
Это, однако, чистое безумие и вздор. Никто не может просмотреть бесконечную последовательность цифр, как, скажем, полицейский просматривает картотеку преступников в папке-регистраторе. Он может это сделать, потому что, хвала Всевышнему, в мире существует лишь конечное число преступников, но вот последовательность знаков числа π после запятой не кончается никогда. Уже Гаусс в письме, отправленном 12 июля 1837 г. своему другу Генриху Христиану Шумахеру, протестует «против использования бесконечных величин как чего-то законченного и полного, ибо в математике это недопустимо». Гильберт примыкает к этому протесту Гаусса, когда пишет, что математическая литература «переполнена несуразностями и бессмыслицами, которые по большей части обязаны своим возникновением бесконечному».
Второе предложение осторожно-сдержанное. Разумеется, что вопрос о том, встречается ли ноль в десятичном представлении числа π бесконечное или конечное число раз, имеет право на существование. Мыслимо, однако, что мы никогда не получим ответа на этот вопрос, но печалиться по этому поводу едва ли стоит, потому что хотя вопрос и допустим, но он далек от насущных проблем и малоинтересен.
Гильберт не желает примиряться с этой отговоркой. Для него принципиально не существует никакого «ignorabimus». Его не существует и для несущественных вопросов. Встречается ли в десятичном представлении числа π ноль конечное или бесконечное число раз, должно быть тем не менее — в этом Гильберт твердо убежден — установлено принципиально: «Он, однако, ведет себя так, или он ведет себя не так (притом что я, возможно, не в состоянии это решить)!»
И наконец, лучший, третий путь, который Гильберт и формулирует в своей программе. Здесь он снова упоминает письмо Гаусса Шумахеру, где написано: «Бесконечное — это всего лишь façon de parler», то есть оборот речи. Точно так же, как Гильберт незадолго до 1900 г. истолковал геометрию как игру такими пустыми выражениями, как «точка», «прямая», «плоскость», — сведя при этом правила игры в двадцать аксиом — и смог представить геометрию в виде полной и непротиворечивой теории, он поступил и с числами с бесконечным десятичным представлением, к которым тоже можно приложить этот принцип.
Вычислительные операции с числами с бесконечным десятичным представлением в глазах Гильберта тоже выглядят как игра в шахматы на доске с бесконечным числом клеток и фигур. Так же как в шахматах существуют фигуры, которые передвигаются по определенным заданным правилам, в математике существуют числа, которыми оперируют по определенным правилам. Так же как в шахматах всегда можно наверняка сказать, поставлен ли королю соперника мат или нет, ожидается, что и в математике можно всегда с уверенностью, руководствуясь определенными принципами, определить, верна какая-либо формула или нет.
В этой шахматной игре математики слово «бесконечный» является не чем иным, как фигурой. И так же, как шахматный король не владеет королевством, не правит народом и не творит историю, а является всего лишь точеным куском дерева в руке игрока, бесконечное, согласно правилам игры Гильберта, является лишь пустым понятием, которому не соответствует ни нечто действительно великое, ни просто большое. «Бесконечное» — это всего лишь слово, с которым обходятся в соответствии с предписанными правилами. Следует, таким образом, показать, чего позволяет достичь отточенная строгой системой правил математическая «шахматная игра», в которой «бесконечное» — это такая же фигура, как, например, король в обычных шахматах, — и нужно просто следовать законам конечной арифметики, то есть вычислительным операциям с хорошо известными конечными числами. С одной стороны, все встречающиеся в этой математике формулы могут быть либо истинными, либо ложными, а с другой стороны, могут оказаться парадоксальными, но не противоречивыми, то есть не ведущими в логический тупик.
Сотрудники Гильберта, и среди них Пауль Бернайс, Вильгельм Аккерман, Жак Эрбран и Джон фон Нейман, сразу и со всей серьезностью отнеслись к программе своего наставника. В связи с этим стоит сказать пару слов о каждом из этих людей.
Пауль Бернайс родился в Лондоне и впоследствии стал жителем Цюриха. В молодости он учился в Париже, Берлине, а затем в Гёттингене. В Гёттингене (с небольшим перерывом на поездки в Цюрих) Бернайс преподавал до 1933 г. Изгнанный из Германии как еврей, он уехал в Швейцарию, где до конца жизни проработал в Высшей технической школе Цюриха. Вместе с Джоном фон Нейманом он разработал изящную систему правил, состоящую из аксиом, рассматривающих как числа, так и «бесконечное» как «фигуры» математической «игры». Надо было всего лишь доказать, что эта система аксиом полна и непротиворечива.
Вильгельм Аккерман был одним из самых верных учеников Гильберта, которому, несмотря на все его усилия работать с программой своего учителя, путь в университет так и остался закрытым. Он выбрал для себя профессию преподавателя гимназии и почти до самой смерти безупречно исполнял эту обязанность. Ходили упорные слухи о том, что Гильберт не пустил Аккермана в университет из-за женитьбы. «О, это же просто великолепно! — будто бы воскликнул Гильберт, когда узнал о свадьбе Аккермана. — Для меня это хорошая новость. Ибо если этот человек настолько безумен, что женился и даже завел ребенка, то теперь я свободен от всяких обязательств перед ним».
Жак Эрбран в 1925 г. блестяще окончил Высшую нормальную школу в Париже, а затем учился в Гёттингене у Джона фон Неймана и Эмми Нётер. Он был знаком с программой Гильберта, внес в ее разработку многообещающий вклад, но, к несчастью, погиб во время восхождения в Альпах в возрасте двадцати трех лет.
Джон фон Нейман появился на свет в 1903 г. в тогда еще императорско-королевском Будапеште. Звали его тогда Нейман Янош, и он был отпрыском преуспевающего банкирского семейства. С детства он поражал всех своими разносторонними дарованиями: говорил на дюжине языков, на некоторых из них быстрее носителей. В Будапеште и Цюрихе он проявил блестящие дарования в химии и математике; для квантовой физики он создал логически законченную систему аксиом, как в свое время Гильберт для геометрии; человечество обязано Джону фон Нейману изобретением «архитектуры», лежащей в основании вычислительной техники; совместно с Оскаром Моргенштерном разработал математическую теорию игр, а на склоне лет консультировал стратегов из внешнеполитического и военного ведомств Америки. С его пылким характером, невероятными познаниями, потрясающим мышлением и безусловной порядочностью, Джон фон Нейман считался и был на самом деле мастером на все руки в науке. Кому, как не ему, можно было доверить скорейшее воплощение в жизнь программы Гильберта.
Действительно, уже в первые годы выполнения программы Гильберта были получены обнадеживающие частные результаты. Казалось, Гильбертово воинство почти достигло его цели — опровергнуть «ignorabimus» Дюбуа-Реймона от математики.
Сам Гильберт, однако, уже не имел в виду изобретателя лозунга «ignorabimus», когда в 1925 г. провозглашал свою программу, ибо к тому времени Дюбуа-Реймона уже тридцать лет как не было в живых. К этому шагу Гильберта побудил вполне живой и очень активный противник: Герман Вейль, критик, поставивший под сомнение возможность вычислений с числами с бесконечным десятичным представлением, вычислений, возможность которых провозгласил Гильберт в своей программе. Было горько сознавать, что противником оказался лучший его ученик.
Назад: Бесконечная игра в вопросы и ответы
Дальше: Всемогущество вместо всеведения