Творческое смешение
Теперь мы снова обратимся к цифровым последовательностям, которые возникают в результате деления. Оказалось, что при делении на очень большие числа иногда приходится очень долго ждать того момента, когда в последовательности цифр вдруг начинает проступать повторяемость и периодическая закономерность. Так как не всегда легко отыскать подходящий большой делитель, да и само деление бывает достаточно трудоемким, мы решили отказаться от идеи создавать таким способом случайные цифровые последовательности.
Но целиком и полностью ее отбрасывать все же не стоит. С помощью деления мы как будто бы перепутываем цифры. Впрочем, оставим на время деление и сосредоточимся на перемешивании.
Тоби Эстерхази, незаметный сотрудник Цирка, разложил перед собой десять игральных карт с числами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Для того чтобы составить для умников Цирка случайные последовательности цифр, Тоби должен основательно перетасовать карты. Потом он извлекает из колоды одну карту, записывает цифру, возвращает карту в колоду, снова тасует ее, а затем извлекает следующую карту и записывает следующую цифру; Тоби продолжает эту игру до тех пор, пока не запишет последовательность из двенадцати цифр — например
7 5 2 5 8 4 0 4 9 6 1 3.
Таким способом Тоби создал одну из 1012, то есть из одного триллиона, возможных комбинаций по 12 цифр, и большая часть этих комбинаций представляется совершенно случайной.
Эстерхази мог бы получить ту же, но периодически повторяющуюся последовательность цифр, если бы поделил число 6917 на число 9191. В результате он бы получил:
6917 ÷ 9191 = 0,752 584 049 613 752 584 049 613 752 584 049 613…
Заметим, кстати, что деление числа 752 584 049 613 на число 999 999 999 999 дает тот же самый результат, что определяется свойствами делителя.
Однако этого недостаточно для использования в методе одноразового блокнота, ибо созданная Тоби Эстерхази последовательность цифр периодически повторяется, то есть обладает явной, видимой закономерностью и упорядоченностью.
Естественно, однако, что важный Эстерхази не сам выполняет перемешивание цифр. У него в подчинении двадцать человек, которые ежечасно, ежедневно и ежемесячно снова и снова складывают карты в колоды, тасуют их, вытаскивают по одной карте, записывают цифру, укладывают карту в колоду, снова тасуют, снова вытаскивают и записывают следующую цифру, потом снова укладывают карту в колоду и снова тасуют, и так каждый божий день в течение восьмичасовой смены. Сам Тоби в это время разыгрывает из себя Оскара Уайльда и предается праздности. Он лишь собирает полученные в конце рабочего дня двадцать списков, составляет их в произвольном порядке и укладывает в сейф, добавляя к спискам предыдущих дней.
Если каждый подчиненный каждую минуту добавляет к списку одну цифру и работает без перерыва восемь часов, то за один рабочий день он составит список из 480 разрядов, а Тоби к концу дня составит список цифр, представляющий собой число из 9600 разрядов. Этот список Тоби укладывает в сейф. Через два месяца Тоби является к Шефу, главному начальнику конторы, настоящего имени которого не знает ни один сотрудник Цирка, и кладет ему на стол случайную последовательность, состоящую из почти двухсот тысяч цифр. «Для наших яйцеголовых из шифровального отдела это слишком мало, — вздыхает Шеф. — Нам нужны более длинные случайные последовательности».
«Тогда мне нужно в десять раз больше сотрудников, — парирует Тоби, — и тогда я смогу за то же время составлять в десять раз большие последовательности».
«В десять раз больше — это тоже мало, — возражает Шеф, кисло усмехнувшись, — а кроме того, последовательности нужны нам быстро. И вообще нам следует занять сотрудников чем-то более осмысленным. Игра с тасованием карточных колод вышла из моды. Мы здесь, на верхнем этаже, обсудили этот вопрос, и сегодня я доведу до твоего сведения наше решение. Яйцеголовые создали компьютерную программу, которая будет выполнять ту работу, какую делали, Тоби, твои пудели»
«Но, Шеф, — обиженно восклицает Тоби, — откуда вы можете знать, что компьютер действительно может составлять случайные цифровые последовательности?! Каким образом машина тасует цифры?»
«Эти частности меня не интересуют! — рычит в ответ Шеф. — Яйцеголовые уверили меня в том, что статистические исследования говорят, что они поработали на совесть. Правда, один раз последовательность повторилась, но период составил в длину 10200 знаков. Это намного больше, чем нам требуется. Впрочем, сейчас мне пришла в голову одна мысль: теперь, когда у нас есть компьютерная система, мы больше не нуждаемся в твоих услугах. Будет намного лучше, если ты удалишься на покой и будешь вести мирную частную жизнь. Можешь завести лавчонку, где будешь впаривать доверчивым американцам фальшивые скульптуры Дега».
Естественно, эта сцена целиком и полностью вымышлена. Но на самом деле существуют компьютеры и программы для осуществления эффективных методов перемешивания и перетасовки цифр. Эти методы позволяют без особых затрат, с молниеносной быстротой и без вмешательства человека создавать случайные цифровые последовательности достаточной длины для шифрования донесений по методу одноразового блокнота. Не беда, что перетасовка цифр в машине устроена так, что последовательность цифр периодически повторяется, потому что длина этих периодов очень велика — Шеф восторгался длиной в 10200 цифр.
Однако впечатляющая последовательность, которую Шеф получил из компьютера, соответствует делению огромного числа с 10200 разрядами на гигантское число 999 99 … 99, состоящее из 10200девяток, и последующей записи всех цифр после запятой.
В делении прячутся почти все тайны мира.