6. Темная энергия
Вот уж не было печали: в последние десятилетия мы обнаружили во Вселенной какое-то загадочное давление вакуума, противоположное космической гравитации. Более того, в конце концов эта «отрицательная гравитация» победит в перетягивании каната, поскольку она заставляет Вселенную экспоненциально расширяться.
За самые головоломные идеи физики XX века скажите спасибо Эйнштейну – он во всем виноват.
За самые головоломные идеи физики XX века скажите спасибо Эйнштейну – это он во всем виноват. Альберт Эйнштейн в лабораториях не бывал, не ставил опытов, чтобы изучать какие-то явления, не использовал сложное оборудование. Он был чистым теоретиком и предпочитал «мысленные эксперименты», когда изучаешь природу в воображении – придумываешь ситуацию или модель, а потом выясняешь следствия какого-нибудь физического принципа. В предвоенной Германии экспериментальная физика ценилась в глазах ученых-арийцев куда выше теоретической. А физиков-евреев по большей части считали учеными второго сорта, однако до поры до времени давали им возможность «копаться в своей песочнице». И что это стала за песочница!
Если физик – например, Эйнштейн, – строит модель, которая должна представлять Вселенную в целом, то манипулировать с этой моделью – это, в сущности, все равно что манипулировать самой Вселенной. А потом наблюдатели и экспериментаторы идут и смотрят, происходят ли явления, предсказанные этой моделью. Если модель неверна или теоретики ошиблись в вычислениях, экспериментаторы найдут несоответствие между предсказаниями модели и тем, что происходит в реальной Вселенной. Для теоретика это будет причиной снова сесть за стол и либо исправить ошибки в старой модели, либо разработать новую.
Одна из самых мощных и масштабных теоретических моделей в истории науки уже упоминалась на этих страницах: это общая теория относительности Эйнштейна, для друзей просто ОТО. ОТО была выдвинута в 1916 году и математически описывает, как все во Вселенной движется под воздействием гравитации. Каждые несколько лет ученые-экспериментаторы изобретают новый, еще более тонкий способ проверить ОТО и лишний раз убеждаются, насколько она точна. Совсем недавно, в 2016 году, мы снова убедились, как прекрасно описывают природу законы, которые подарил нам Эйнштейн: в специально созданной для этого обсерватории открыли гравитационные волны (речь идет о Лазерно-интерферометрической гравитационно-волновой обсерватории LIGO, расположенной в Хэнфорде, штат Вашингтон, и Ливингстоне, штат Луизиана). Существование этих волн предсказал Эйнштейн, и это рябь, со скоростью света пробегающая по ткани пространства-времени и возникающая в результате сильных гравитационных возмущений, например, столкновения двух черных дыр.
Именно это ученые и наблюдали. Первыми удалось зарегистрировать гравитационные волны от столкновения черных дыр в галактике, находящейся от нас в 1300 миллионов световых лет, которое произошло тогда, когда Земля была заселена исключительно сонмом одноклеточных организмов. Пока эта рябь расходилась во все стороны, за следующие 800 миллионов лет на Земле развилась сложная жизнь – цветы, динозавры, летающие существа, а также класс позвоночных под названием млекопитающие. У одного подкласса млекопитающих развились лобные доли, а в нагрузку к ним – способность к сложным размышлениям. Мы называем этих существ приматами. Отдельная ветвь этих приматов в результате генетической мутации научилась говорить, и эта ветвь – homo sapiens – изобрела сельское хозяйство, цивилизацию, философию, искусство и науку.
И все это за последние десять тысяч лет.
И вот наконец один ученый, живший в ХХ веке, выдумал из головы теорию относительности и предсказал существование гравитационных волн. Прошло еще сто лет – и появились технические методы, позволяющие проверить это предсказание, и произошло это за считанные дни до того, как гравитационная волна, мчавшаяся сквозь пространство 1300 миллионов лет, накатила на Землю – и ее удалось зарегистрировать.
Зараза он был, этот Эйнштейн.
* * *
Большинство научных моделей поначалу формулируются вчерне – в них оставлен простор для подгонки параметров, которая позволит лучше соответствовать известной Вселенной. В гелиоцентрической Вселенной, которую описал математик Николай Коперник, живший в XVI веке, планеты вращались вокруг Солнца по идеальным окружностям. То, что планеты вращаются вокруг Солнца, соответствует реальности, более того, это огромный шаг вперед по сравнению с «геоцентрической» моделью, где все вращалось вокруг Земли, а вот с окружностями Коперник промахнулся – все планеты вращаются вокруг Солнца по вытянутым, эллиптическим орбитам, но и это лишь приближение, на самом деле форма орбит сложнее. В целом Коперник выдвинул верную гипотезу, и это главное. Просто потребовалось несколько доработать ее, чтобы она точнее описывала действительность.
Однако в случае теории относительности, основные принципы этой теории требуют, чтобы все происходило точь-в-точь как предсказано. В сущности, может показаться, будто Эйнштейн выстроил карточный домик: два-три простых постулата держат на себе всю структуру. Более того, когда Эйнштейн в 1931 году узнал о существовании книги «Сто авторов против Эйнштейна» (R. Israel, E. Ruckhaber, R. Weinmann, et al. «Hundert Autoren Gegen Einstein», Leipzig: R. Voigtlanders Verlag, 1931), он заметил: «Если бы я ошибся, хватило бы и одного».
Так были посеяны семена одного из самых удивительных ляпсусов в истории науки. В новые формулы гравитации, выведенные Эйнштейном, входила так называемая «космологическая постоянная», которую он обозначил заглавной греческой буквой «лямбда» – λ. Наличие этого члена уравнения с математической точки зрения было не обязательно, но допустимо, и добавленная в уравнения Эйнштейна космологическая постоянная позволяла получить в качестве решения статическую Вселенную.
В те времена никто и представить себе не мог, что Вселенная не просто существует, а еще и что-то делает. Поэтому единственная роль λ сводилась к противодействию гравитации в рамках модели Эйнштейна: космологическая постоянная удерживала Вселенную в равновесии и сопротивлялась естественному стремлению гравитации слепить все в один массивный ком. В этом смысле Эйнштейн изобрел Вселенную, которая не сжимается и не расширяется, что соответствовало преобладавшим в его время представлениям.
Подобно мячику на вершине холма, которому достаточно легчайшего толчка, чтобы скатиться в ту или другую сторону, или карандашу, стоящему на острие, Вселенная Эйнштейна пребывала в шатком равновесии между расширением и полным коллапсом.
В дальнейшем русский физик Александр Фридман математически доказал, что Вселенная Эйнштейна хоть и сбалансирована, однако не стабильна. Подобно мячику на вершине холма, которому достаточно легчайшего толчка, чтобы скатиться в ту или другую сторону, или карандашу, стоящему на острие, Вселенная Эйнштейна пребывала в шатком равновесии между расширением и полным коллапсом. Более того, теория Эйнштейна была новой, а если даешь чему-то название, это не обязательно существует на самом деле, так что Эйнштейн и сам понимал, что его «лямбда» как сила отрицательного тяготения не имела соответствия в физической Вселенной.
* * *
Общая теория относительности Эйнштейна радикально отличалась от всех предыдущих представлений о гравитационном притяжении. Эйнштейна не удовлетворяла мысль Исаака Ньютона, что гравитация непостижимым образом действует на расстоянии (она и самому Ньютону не нравилась). Поэтому в ОТО гравитация считается реакцией массы на местное искривление пространства и времени, вызванное какой-то другой массой или энергетическим полем. Иначе говоря, концентрация массы вызывает искажения (вроде ямок) на ткани пространства-времени. Эти искажения ведут движущиеся массы по так называемым геодезическим кривым, которые в наших глазах выглядят как искривленные траектории, которые мы называем орбитами. Мудреным словом «геодезическая» математики обозначают кратчайшее расстояние между двумя точками на кривой поверхности, то есть в нашем случае это кратчайшее расстояние между двумя точками искривленной четырехмерной ткани пространства-времени. Пожалуй, изящнее всех сформулировал основную мысль Эйнштейна американский физик-теоретик Джон Арчибальд Уилер: «Вещество диктует пространству, как искривляться, пространство диктует веществу, как двигаться». Кстати, на старших курсах я ходил на спецкурс Джона Уилера по общей теории относительности (и познакомился там со своей будущей женой), где он частенько это повторял.
В целом общая теория относительности описывает две разновидности гравитации. Одна прекрасно нам знакома – это сила тяготения между подброшенным мячиком и Землей или между Солнцем и планетами. А еще ОТО предсказала другую разновидность – загадочное антигравитационное давление, связанное с вакуумом самого пространства-времени. Лямбда оберегала истинность представлений самого Эйнштейна и всех до единого физиков его времени: статус-кво статической Вселенной – нестабильную статическую Вселенную. А считать нестабильность естественным состоянием физической системы – это нарушение научного кредо. Нельзя утверждать, что целая Вселенная – это какой-то частный случай, почему-то уравновесившийся на веки вечные. В истории науки еще не бывало ничего, что вело бы себя подобным образом, такого не дают ни наблюдения, ни вычисления, ни воображение. Так что статическая Вселенная не имела надежного прецедента.
Прошло 13 лет, и в 1929 году американский астрофизик Эдвин Хаббл открыл, что Вселенная нестационарна. Он обнаружил – и подтвердил убедительными данными – что чем дальше от нас находится галактика, тем быстрее она удаляется от Млечного Пути. То есть Вселенная расширяется. Тогда Эйнштейн, которого с самого начала смущала космологическая постоянная, не имевшая соответствий среди сил природы, и который огорчился, что сам упустил возможность предсказать расширение Вселенной, отмёл идею лямбды, назвав ее «величайшей ошибкой» в своей жизни.
Удалив лямбду из своей формулы, он приписал ей значение ноль: ведь если, предположим, A = B + C, а потом узнаешь, что A = 10 и B = 10, получается, что A по-прежнему равно B плюс C, только C равно 0 и поэтому не нужно в этом уравнении.
Но это был еще не конец. Теоретики десятилетиями то и дело извлекали лямбду из чулана и вертели так и этак, представляя себе, как бы выглядели их гипотезы во Вселенной, где есть космологическая постоянная. Прошло 69 лет, и ученые эксгумировали лямбду в последний раз. В начале 1998 года две конкурирующие группы астрофизиков сделали громкие заявления. Одну из этих групп возглавлял Сол Перлмуттер из Национальной лаборатории имени Лоуренса в Беркли в штате Калифорния, а вторую – Брайан Шмидт из обсерваторий Маунт-Стромло и Сайдинг-Спринг в Австралии, неподалеку от Канберры, и Адам Рисс из Университета Джонса Хопкинса в Балтиморе в штате Мэриленд. Десятки самых далеких сверхновых – это разновидность взрывающихся звезд – оказались заметно тусклее, чем можно было ожидать, исходя из хорошо изученных закономерностей их поведения. Получилось, что либо далекие сверхновые ведут себя иначе, чем близкие, либо они находятся на 15 % дальше, чем предсказывали общепринятые космологические модели. А значит, они разбегаются с ускорением, и «естественное» объяснение этому явлению известно только одно – эйнштейновская лямбда, космологическая постоянная.
И когда астрофизики смахнули с нее пыль и подставили обратно в первоначальные уравнения Эйнштейна, оказалось, что они теперь описывают ту Вселенную, которую мы наблюдаем.
* * *
Сверхновые, которые изучали Перлмуттер и Шмидт, оправдали свое участие в исследованиях на все сто. Каждая из них взрывалась одинаково – с небольшими отклонениями, – сжигала одно и то же количество топлива, высвобождала одно и то же исполинское количество энергии за одно и то же время и достигала при этом одного и того же пика светимости. То есть они служили своего рода меркой, «стандартной свечой» для вычисления космических расстояний до галактик, в которых они взорвались, в самых дальних уголках Вселенной.
Стандартные свечи кардинально упрощают вычисления: поскольку мощность у всех сверхновых одинаковая, тусклые находятся далеко, а яркие близко. Измерив их яркость (проще простого), можно точно сказать, на каком расстоянии они находятся от нас и друг от друга. Если бы у всех сверхновых была разная светимость, на основании одной лишь яркости нельзя было бы делать никаких выводов о расстоянии. Тусклая звезда могла бы оказаться и лампочкой на много ватт вдали, и лампочкой на мало ватт вблизи.
Прекрасно. Но есть и второй способ измерить расстояние до галактик – подсчитать скорость их удаления от нашего Млечного Пути, скорость того самого разбегания, которое неотъемлемо связано с расширением Вселенной. Как первым показал Хаббл, при расширении Вселенной далекие объекты удаляются от нас быстрее, чем близкие. Так что, если рассчитать скорость удаления галактики (еще одна простая задачка), можно вывести расстояние до нее.
Если два этих испытанных метода дают для одного и того же объекта разные расстояния, значит, где-то вкралась ошибка. Либо из сверхновых получились плохие стандартные свечи, либо наша модель измерения темпа расширения Вселенной на основании скоростей галактик неверна.
Так вот, ошибка действительно вкралась. Оказалось, что из сверхновых получаются великолепные стандартные свечи, выдержавшие скрупулезную проверку многих ученых-скептиков, так что вариант остался только один: астрофизики получили Вселенную, которая расширяется быстрее, чем мы думали, и от этого галактики разбежались дальше, чем предсказывали расчеты. И объяснить ускоренное разбегание не удавалось ничем, кроме лямбды – космологической постоянной Эйнштейна.
Это было первое прямое свидетельство, что Вселенную пронизывает отталкивающая сила, противостоящая гравитации, и именно поэтому и пришлось воскресить лямбду. Космологическая постоянная внезапно обрела физический смысл, ей потребовалось название, и на авансцену космической драмы вышла «темная энергия»: в этом имени удачно сочетаются и завеса тайны, и наше глубокое непонимание причин происходящего. В 2011 году Перлмуттер, Шмидт и Рисс получили за это открытие заслуженную Нобелевскую премию.
Самые точные расчеты на сегодня показывают, что темная энергия – это главная достопримечательность нашей Вселенной: она отвечает за 68 % всей массы-энергии во Вселенной – еще 27 % составляет темное вещество, а обычному веществу остается всего-то 5 %.
* * *
Форма нашей четырехмерной Вселенной определяется соотношением между количеством вещества и энергии, обитающих в космосе, и темпом расширения космоса. Это соотношение для удобства математических записей условились обозначать заглавной греческой буквой «омега» – Ω; очередная греческая буква, держащая в узде все мироздание.
Если взять плотность вещества-энергии во Вселенной и поделить на плотность вещества-энергии, которая нужна, чтобы всего лишь остановить расширение (так называемая «критическая плотность»), получится омега.
Поскольку и масса, и энергия заставляют пространство-время искажаться, то есть искривляться, омега говорит нам о форме космоса.
Если омега меньше единицы, то реальное значение массы-энергии падает ниже критического, и Вселенная расширяется вечно, во всех направлениях и все время, принимая форму седла, при которой изначально параллельные линии расходятся.
Если омега равна единице, Вселенная расширяется вечно – но скорость ее расширения все время уменьшается. В этом случае она плоская, и в ней работают геометрические законы, которые мы изучали в школе: в частности, параллельные прямые не пересекаются.
Если омега больше единицы, параллельные линии сходятся, Вселенная свертывается и, в конце концов, превращается в тот же огненный шар, каким была вначале.
С тех самых пор, как Хаббл открыл расширение Вселенной, ни одной группе экспериментаторов ни разу не удалось получить омегу, хоть сколько-нибудь близкую к единице. Сумма всей массы и энергии, которую удалось зарегистрировать при помощи телескопов, и даже самые смелые экстраполяции с учетом темного вещества давали в лучшем случае Ω = 0,3. Согласно этой экспериментальной картине Вселенная получалась «открытой» для любых переговоров и скакала в бесконечное будущее в ковбойском седле.
Тем временем, начиная с 1979 года, американский физик Алан Гут из Массачусетского технологического института и другие ученые работали над поправкой к теории Большого взрыва, которая позволяла избавиться от некоторых неприятных осложнений, не позволявших получить модель Вселенной, наполненной веществом и энергией так равномерно, как наша. Фундаментальный побочный продукт этой поправки к теории Большого взрыва – омега, приближающаяся к единице. Не к одной второй. Не к двум. Не к миллиону. К единице.
Впрочем, едва ли на свете нашелся физик-теоретик, который не согласился бы с этим условием, поскольку оно помогало объяснить глобальные свойства нынешней Вселенной Большим взрывом. Однако оставалась одна маленькая трудность: согласно поправке, во Вселенной было втрое больше массы-энергии, чем наблюдали экспериментаторы. Теоретиков это не смутило: значит, заявили они, экспериментаторы плохо искали.
По всем расчетам видимое вещество обеспечивает не больше 5 % критической плотности. А как же загадочное темное вещество? Его тоже посчитали. Ни тогда, ни сейчас никто не знал, что это такое, но свой вклад в общую сумму оно точно вносит. Темного вещества в пять-шесть раз больше, чем видимого. Но и этого еще мало. Экспериментаторы растерялись, а теоретики настаивали: «Ищите дальше». В каждом лагере были уверены, что в другом ошибаются, – пока не открыли темную энергию. Этого компонента хватило, чтобы в сочетании с обычными веществом и энергией и темным веществом поднять плотность до критической отметки. К вящему удовольствию как теоретиков, так и экспериментаторов.
Теоретики и экспериментаторы впервые пришли к миру и согласию. Оказалось, правы и те и другие – по-своему. Омега и правда равна единице, как требовали от Вселенной теоретики, хотя эту величину и не получить простым сложением всего вещества, и обычного, и темного, как они предполагали по наивности. Сегодня в космосе не больше вещества, чем рассчитывали наблюдатели. Никто не ожидал, что в космосе есть столько темной энергии, и тем более никто не думал, что именно она станет великим миротворцем.
* * *
Что же это такое? Никто не знает. Самая правдоподобная догадка – что темная энергия представляет собой квантовое свойство космического вакуума, который вовсе не пуст, а полон частиц и их двойников из антивещества. Они то возникают, то аннигилируют, и происходит это так быстро, что их не успевают зарегистрировать. Потому-то их и прозвали виртуальными частицами – за эфемерность. Великое наследие квантовой физики – науки о микромире – требует, чтобы мы отнеслись к этой гипотезе очень серьезно. Каждая пара виртуальных частиц оказывает на окружающее пространство крошечное давление, когда ненадолго вторгается в него. К сожалению, если оценить суммарное отталкивающее «давление вакуума», которое дают за свою краткую жизнь виртуальные частицы, результат окажется более чем в 10120 раз больше, чем экспериментально полученное значение космологической постоянной. Этот множитель обескураживающе огромен: перед нами самое крупное расхождение теории и наблюдений за всю историю науки.
Да, мы понятия не имеем, в чем тут дело. Однако это не абсолютное невежество. Темная энергия не мчится по волнам научных знаний без руля и без ветрил в виде хоть какой-нибудь теории. Она обитает едва ли не в самой тихой гавани на свете – в эйнштейновских уравнениях общей теории относительности. Это космологическая постоянная. Это лямбда. Чем бы ни оказалась темная энергия, мы уже знаем, как ее измерить и как рассчитать ее воздействие в прошлом, настоящем и будущем космоса. Так что величайшей ошибкой в жизни Эйнштейна было как раз объявить, что лямбда – его величайшая ошибка.
* * *
Охота в разгаре. Теперь мы знаем, что темная энергия существует на самом деле, и группы астрофизиков запустили многообещающие программы с целью измерить расстояния и рост структуры Вселенной на основании данных с земных и космических телескопов. Эти наблюдения позволят изучить во всех подробностях, как темная энергия повлияла на историю расширения Вселенной, так что теоретикам будет чем заняться. Им очень нужно оправдаться за то, как они опозорились с оценкой количества темной энергии.
Может быть, нам нужна какая-то альтернатива ОТО? Может быть, следует кардинально пересмотреть отношения между ОТО и квантовой механикой? А может быть, еще не родился тот умник, который разработает теорию темной энергии?
Лямбда и расширяющаяся Вселенная примечательны тем, что отталкивающая сила возникает из вакуума, а не из чего-то материального. Когда вакуум расширяется, плотность вещества и известной нам энергии во Вселенной уменьшается – и тем сильнее становится относительное воздействие лямбды на положение дел в космосе. Чем сильнее отталкивающее давление вакуума, тем вакуума больше, а чем больше вакуума, тем сильнее его отталкивающее давление – этим и объясняется бесконечно возрастающее по экспоненте расширение Вселенной.
А следовательно, все то, что не связано гравитационными узами с окрестностями Млечного Пути, будет удаляться от нас с возрастающей скоростью – в рамках ускоряющегося расширения ткани пространства-времени. Далекие галактики, которые мы сейчас видим на ночном небе, в конце концов скроются за недостижимым горизонтом, поскольку будут удаляться от нас со скоростью больше скорости света. Да-да, такое возможно, поскольку это не они сами движутся через космическое пространство со сверхсветовой скоростью – это ткань самой Вселенной несет их. Законы физики этого не запрещают.
Пройдет около триллиона лет, и все живое в нашей галактике, вероятно, не будет знать, что существуют и другие галактики. Вся наблюдаемая Вселенная сведется к горстке близких долгоживущих звезд в пределах Млечного Пути. А за звездной ночью раскинется безграничная пустота – тьма на поверхности бездны.
Темная энергия, фундаментальное свойство космоса, в конце концов лишит будущие поколения возможности понять устройство Вселенной, с которой они имеют дело. Если современные астрофизики не оставят подробные записи по всей галактике и не закопают их где-нибудь в удивительной капсуле времени, рассчитанной на триллион лет, ученые пост-апокалиптической эпохи не будут знать ничего о галактиках, главнейшей форме организации вещества в нашем космосе, а следовательно, лишатся доступа к самым интересным страницам космической драмы нашей Вселенной.
А теперь познакомьтесь – мой самый страшный сон: вдруг и мы тоже упускаем из виду какие-то фундаментальные свойства, которыми обладала Вселенная в прошлом? Какие страницы космической истории помечены для нас грифом «совершенно секретно»? Чего не хватает в наших теориях и наших уравнениях – вдруг в них нет того, без чего мы будем вынуждены вечно вслепую задавать вопросы без ответов?