Сервис-ориентированные «архитектуры» и микросервисные «архитектуры» приобрели особую популярность в последнее время. Эта популярность обусловлена, в том числе, следующими причинами:
• Службы выглядят полностью независимыми друг от друга. Но, как мы увидим далее, это верно лишь отчасти.
• Службы, похоже, можно разрабатывать и развертывать независимо. И снова, как мы увидим далее, это верно лишь отчасти.
Прежде всего уточним, что утверждение, будто использование служб по своей природе является архитектурой, в принципе неверно. Архитектура системы определяется границами, отделяющими высокоуровневые политики от низкоуровневых деталей, и следованием правилу зависимостей. Службы, просто делящие приложение на функциональные элементы, по сути, являются лишь функциями, вызовы которых обходятся довольно дорого и не обязательно имеют важное архитектурное значение.
То есть не все службы должны быть архитектурно значимыми. Часто бывает выгодно создавать службы, распределяющие функциональные возможности по разным процессам и платформам, независимо от того, подчиняются ли они правилу зависимостей. Службы сами по себе не определяют архитектуру.
Наглядной аналогией является организация функций. Архитектура монолитной или компонентной системы определяется некоторыми вызовами функций, пересекающими архитектурные границы и следующими правилу зависимостей. Однако многие другие функции в системе просто отделяют одно поведение от другого и не являются архитектурно значимыми.
То же верно в отношении служб. Службы, в конечном счете, — это всего лишь вызовы функций через границы процессов и/или платформ. Некоторые из этих служб действительно являются архитектурно значимыми, а другие — нет. Основной интерес для нас в этой главе представляют первые.
Знак вопроса в заголовке указывает, что в этом разделе мы поставим под сомнение популярное мнение о сервис-ориентированной архитектуре. Давайте рассмотрим предполагаемые преимущества по одному.
Одно из самых больших предполагаемых преимуществ деления системы на службы заключается в полной независимости их друг от друга. В конце концов, каждая служба выполняется в отдельном процессе или даже на другой машине; поэтому службы не имеют доступа к переменным друг друга. Более того, для каждой службы должен быть четко определен ее интерфейс.
Все это верно до определенной степени, но не до конца. Да, службы независимы на уровне отдельных переменных. Но они все еще могут быть связаны вместе общими ресурсами на одной машине или в сети. Более того, они тесно связаны общими данными.
Например, чтобы добавить новое поле в запись, которая передается между службами, придется изменить все службы, использующие это новое поле. Службы должны также согласовать интерпретацию данных в этом поле. То есть службы тесно связаны с записью и, соответственно, косвенно связаны друг с другом.
Утверждение о необходимости четко определять интерфейс тоже верно, но оно в той же мере относится к функциям. Интерфейсы служб не являются более формальными, строгими и четкими, чем интерфейсы функций. Как видите, это преимущество довольно иллюзорно.
Другое предполагаемое преимущество — возможность передачи служб во владение отдельным командам. Каждая такая команда может отвечать за разработку, сопровождение и эксплуатацию службы, как это предполагает стратегия интеграции разработки и эксплуатации (DevOps). Такая независимость разработки и развертывания, как предполагается, является масштабируемой. Считается, что крупные корпоративные системы могут состоять из десятков, сотен и даже тысяч служб, разрабатываемых и развертываемых независимо. Разработку, сопровождение и эксплуатацию системы можно разделить между аналогичным количеством независимых команд.
Это утверждение верно, но лишь отчасти. Во-первых, как показывает история, крупные корпоративные системы могут состоять из монолитных и компонентных систем, а также из систем, состоящих из служб. То есть службы не единственный способ построения масштабируемых систем.
Во-вторых, как было показано в разделе «Заблуждение о независимости», службы не всегда могут разрабатываться, развертываться и эксплуатироваться независимо. Их разработку приходится координировать в той же мере, в какой они связаны данными или поведением.
Чтобы рассмотреть эти два заблуждения на примере, вернемся снова к нашей системе агрегатора такси. Как вы помните, эта система знает о нескольких компаниях, предоставляющих услуги такси в данном городе, и позволяет клиентам заказывать поездки. Представим, что клиенты выбирают такси по ряду критериев, таких как время ожидания, стоимость, комфорт и опытность водителя.
Мы решили для большей масштабируемости реализовать ее в виде множества маленьких микрослужб. Мы разделили большой коллектив разработчиков на множество маленьких команд и каждой поручили разработку, сопровождение и эксплуатацию соответствующего количества микрослужб.
Схема на рис. 27.1 демонстрирует, как наши предполагаемые архитекторы распределили ответственность приложения между микрослужбами. Служба TaxiUI взаимодействует непосредственно с клиентом, заказывающим такси с помощью своего мобильного устройства. Служба TaxiFinder исследует параметры разных поставщиков услуг TaxiSupplier и выбирает возможных
Рис. 27.1. Организация системы-агрегатора услуг такси в виде комплекса служб
кандидатов для обслуживания клиента. Она собирает их во временной записи, прикрепленной к данному пользователю. Служба TaxiSelector получает критерии, обозначенные пользователем, касающиеся стоимости, времени, комфорта и т.д., и выбирает наиболее походящий вариант из списка кандидатов. Затем она передает выбранный вариант службе TaxiDispatcher, которая оформляет заказ.
Теперь представим, что эта система работает уже больше года. Наши разработчики успешно добавляют новые возможности, сопровождают и эксплуатируют все эти службы.
В один прекрасный солнечный день сотрудники отдела маркетинга организовали встречу с разработчиками. На этой встрече они объявили о своем решении организовать услугу по доставке котят. Как предполагается, клиенты смогут заказать доставку котят себе домой или на работу.
Компания создаст несколько пунктов сбора котят по всему городу, и когда поступит заказ, ближайшее такси заберет котенка в одном из пунктов сбора и доставит по указанному адресу.
Один из поставщиков услуг согласился участвовать в этой программе. Другие, скорее всего, последуют его примеру, а третьи могут отклонить предложение.
У некоторых водителей, как вы понимаете, может быть аллергия на кошек, поэтому их нельзя выбирать для выполнения таких заказов. Кроме того, у некоторых клиентов тоже может быть аллергия на кошек, поэтому для обслуживания тех, кто заявил об аллергии на кошек, не должны выбираться машины, осуществлявшие доставку котят в последние три дня.
А теперь взгляните на диаграмму служб и скажите, сколько из них придется изменить, чтобы реализовать описанную услугу? Все! Совершенно понятно, что разработка и развертывание услуги доставки котят должны быть тщательно скоординированы.
Иными словами, все службы тесно связаны между собой и не могут разрабатываться, развертываться и сопровождаться независимо.
Эта проблема свойственна всем сквозным задачам. С этой проблемой приходится сталкиваться любой системе, независимо от того, организована она в виде комплекса служб или нет. Системы, разделенные на службы по функциональному признаку, как показано на рис. 27.1, очень уязвимы для новых особенностей, пересекающих все эти функциональные уровни.
Как бы мы решили эту проблему в архитектуре, состоящей из компонентов? Неуклонное следование принципам проектирования SOLID вынудило бы нас создать набор классов, которые можно было бы полиморфно расширять под потребности новых возможностей.
Схема на рис. 27.2 демонстрирует эту стратегию. Классы на этой схеме примерно соответствуют службам на рис. 27.1. Но обратите внимание на границы. Отметьте также, что все зависимости оформлены в соответствии с правилом зависимостей.
Рис. 27.2. Использование объектно-ориентированного подхода для преодоления проблемы сквозных задач
Большая часть логики оригинальных служб сосредоточена в базовых классах объектной модели. Однако часть логики, связанная с поездками, выделена в компонент Rides. Реализация новой услуги по доставке котят помещена в отдельный компонент Kittens. Эти два компонента переопределяют абстрактные базовые классы из оригинальных компонентов с применением шаблонов, таких как «Шаблонный метод» или «Стратегия».
Отметим еще раз, что два новых компонента, Rides и Kittens, подчиняются правилу зависимостей. Обратите также внимание, что классы, реализующие эти возможности, создаются фабриками под управлением пользовательского интерфейса.
Ясно, что в этой схеме после реализации Kittens придется изменить TaxiUI. Но все остальное останется в прежнем виде. В систему добавится лишь новый файл jar, Gem или DLL, который будет динамически загружаться во время выполнения системы.
То есть компонент Kittens существует отдельно от других и может разрабатываться и развертываться независимо.
Возникает резонный вопрос: можно ли реализовать нечто подобное для служб? И ответ, конечно, да! Службы не обязательно должны быть маленькими монолитами. Службы также могут проектироваться в соответствии с принципами SOLID и данной структурой компонентов, чтобы иметь возможность добавлять в них новые компоненты, не изменяя существующие.
Представьте службу на Java как набор абстрактных классов в одном или нескольких jar-файлах. Каждую новую возможность или расширение существующей возможности можно реализовать как отдельный jar-файл, содержащий классы, наследующие абстрактные классы из уже имеющихся jar-файлов. Для развертывания новой возможности в этом случае больше не потребуется повторно развертывать службы, достаточно лишь добавить новые jar-файлы в пути загрузки этих служб. Иными словами, добавление новой возможности выполняется в соответствии с принципом открытости/закрытости (Open-Closed Principle; OCP).
Схема на рис. 27.3 демонстрирует такую организацию служб. На ней представлены все те же службы, только на этот раз каждая состоит из компонентов, что позволяет добавлять новые возможности, реализованные в виде новых производных классов. Эти производные классы находятся в собственных компонентах.
Рис. 27.3. Каждая служба состоит из компонентов, что позволяет добавлять новые возможности, реализованные в виде новых производных классов
Теперь мы знаем, что архитектурные границы не всегда совпадают с границами между службами. Часто эти границы проходят через службы, деля их на компоненты.
Для преодоления проблем, связанных со сквозными задачами, с которыми сталкиваются все достаточно крупные системы, службы должны иметь компонентные архитектуры, следующие правилу зависимостей, как показано на рис. 27.4. Эти службы не определяют архитектурные границы в системе; границы определяются компонентами в службах.
Рис. 27.4. Службы должны иметь компонентные архитектуры, следующие правилу зависимостей
Несмотря на все преимущества масштабируемости и удобства разработки системы, службы не являются архитектурно значимыми элементами. Архитектура системы определяется границами, проводимыми внутри этой системы, и зависимостями, пересекающими эти границы. Архитектура не определяется физическими механизмами, посредством которых элементы взаимодействуют и выполняются.
Служба может быть единственным компонентом, полностью окруженным архитектурной границей. Но точно так же служба может состоять из нескольких компонентов, разделенных архитектурными границами. В редких случаях клиенты и службы могут быть настолько связаны, что не могут иметь архитектурной значимости.
Примерно по числу программистов в команде.
Хотелось бы надеяться, что в очень редких, но опыт показывает, что это не так.