Книга: Чистая архитектура. Искусство разработки программного обеспечения
Назад: 7. Принцип единственной ответственности
Дальше: 9. Принцип подстановки Барбары Лисков

8. Принцип открытости/закрытости

Martin_Page_095_Image_0001.tif 

Принцип открытости/закрытости (Open-Closed Principle; OCP) был сформулирован Бертраном Мейером в 1988 году. Он гласит:

Программные сущности должны быть открыты для расширения и закрыты для изменения.

Иными словами, должна иметься возможность расширять поведение программных сущностей без их изменения.

Это одна из основных причин, почему мы изучаем архитектуру программного обеспечения. Очевидно, если простое расширение требований ведет к значительным изменениям в программном обеспечении, значит, архитекторы этой программной системы потерпели сокрушительное фиаско.

Большинство студентов, изучающих проектирование программного обеспечения, признают принцип OCP как руководство по проектированию классов и модулей. Но на уровне архитектурных компонентов этот принцип приобретает еще большую значимость.

Увидеть это поможет простой мысленный эксперимент.

Мысленный эксперимент

Представьте, что у нас есть финансовая сводка. Содержимое страницы прокручивается, и отрицательные значения выводятся красным цветом.

Теперь допустим, что заинтересованные лица попросили нас представить ту же информацию в виде отчета, распечатанного на черно-белом принтере. Отчет должен быть разбит на страницы, включать соответствующие верхний и нижний колонтитулы на каждой странице и колонку меток. Отрицательные значения должны заключаться в круглые скобки.

Очевидно, что для этого придется написать новый код. Но как много старого кода придется изменить?

В программном обеспечении с хорошо проработанной архитектурой таких изменений должно быть очень немного. В идеале их вообще не должно быть.

Как? Правильно разделяя сущности, которые изменяются по разным причинам (принцип единственной ответственности), и затем правильно организуя зависимости между этими сущностями (принцип инверсии зависимостей).

Применяя принцип единственной ответственности, можно прийти к потоку данных, изображенному на рис. 8.1. Некоторая процедура анализирует финансовые данные и производит данные для отчета, которые затем форматируются двумя процедурами формирования отчетов.

62853.png 

Рис. 8.1. Результат применения принципа единственной ответственности

Самое важное, что нужно понять, — в данном примере в создание отчета вовлечены две отдельные ответственности: вычисление данных для отчета и представление этих данных в форме веб-отчета или распечатанного отчета.

Сделав такое разделение, мы должны организовать зависимости в исходном коде так, чтобы изменения в одной из ответственностей не вызывали необходимости изменений в другой. Кроме того, новая организация должна гарантировать возможность расширения поведения без отмены изменений.

Этого можно добиться, выделив процессы в классы, а классы в компоненты, ограниченные двойными линиями на рис. 8.2. Компонент в левом верхнем углу на этом рисунке — контроллер. В правом верхнем углу — интерактор, или посредник. В правом нижнем углу — база данных. Наконец, в левом нижнем углу изображены четыре компонента — презентаторы и представления.

Классы, отмеченные символами <I>, — это интерфейсы; отмеченные символами <DS> — это структуры данных (data structures). Простые стрелки соответствуют отношениям использования. Стрелки с треугольным наконечником соответствуют отношениям реализации или наследования.

Первое, на что следует обратить внимание, — все зависимости определены на уровне исходного кода. Стрелка, направленная от класса A к классу B, означает, что в исходном коде класса A упоминается имя класса B, но в коде класса B не упоминается имя класса A. Так, на рис. 8.2 диспетчер финансовых данных знает о существовании шлюза через отношение реализации, а шлюз финансовых данных ничего не знает о диспетчере.

62862.png 

Рис. 8.2. Выделение процессов в классы и выделение классов в компоненты

Также важно отметить, что каждая двойная линия пересекается только в одном направлении. Это означает, что все отношения компонентов однонаправленны, как показано на графе компонентов (рис. 8.3). Эти стрелки указывают на компоненты, которые мы стремимся защитить от изменения.

Позволю себе повторить еще раз: если компонент A требуется защитить от изменений в компоненте B, компонент B должен зависеть от компонента A.

Нам нужно защитить контроллер от изменений в презентаторах. Нам нужно защитить презентаторы от изменений в представлениях. Нам нужно защитить интерактор от изменений в... во всех остальных компонентах.

Интерактор находится в позиции, лучше соответствующей принципу ­открытости/закрытости. Изменения в базе данных, или в контроллере, или в презентаторах, или в представлениях не должны влиять на ин­терактор.

62917.png 

Рис. 8.3. Отношения компонентов однонаправленны

Почему интерактор должен придерживаться такой привилегированной позиции? Потому что он реализует бизнес-правила. Интерактор реализует политики высшего уровня в приложении. Все другие компоненты решают второстепенные задачи. Интерактор решает самую главную задачу.

Несмотря на то что контроллер является не таким важным компонентом, как интерактор, он важнее презентаторов и представлений. А презентаторы, хотя и менее важные, чем контроллеры, в свою очередь, важнее представлений.

Обратите внимание, что в результате выстраивается иерархия защиты, основанная на понятии «уровня». Интеракторы занимают самый верхний уровень, поэтому они должны быть самыми защищенными. Представления занимают самый низкий уровень, поэтому они наименее защищены. Презентаторы находятся уровнем выше представлений, но ниже контроллера или интерактора.

Именно так работает принцип открытости/закрытости на архитектурном уровне. Архитекторы разделяют функциональные возможности, опираясь на то, как, почему и когда их может потребоваться изменить, и затем организуют их в иерархию компонентов. Компоненты, находящиеся на верхних уровнях в такой иерархии, защищаются от изменений в компонентах на нижних уровнях.

Управление направлением

Если вы испытали шок от схемы классов, представленной выше, взгляните на нее еще раз. Основная сложность в ней заключается в необходимости сориентировать зависимости между компонентами в правильных направлениях.

Например, интерфейс шлюза финансовых данных между генератором финансового отчета и диспетчером финансовых данных добавлен с целью обратить направление зависимости, которая иначе была бы направлена из компонента интерактора в компонент базы данных. То же относится к интерфейсу презентатора финансового отчета и двум интерфейсам представлений.

Сокрытие информации

Интерфейс заказчика финансового отчета служит другой цели — защитить контроллер финансового отчета от необходимости знать внутренние особенности интерактора. В отсутствие этого интерфейса контроллер получил бы транзитивные зависимости от финансовых сущностей.

Транзитивные (переходящие) зависимости нарушают общий принцип, согласно которому программные сущности не должны зависеть от того, что они не используют непосредственно. Мы вновь встретимся с этим принципом, когда будем обсуждать принципы разделения интерфейсов и совместного повторного использования (Common Reuse Principle; CRP).

Поэтому, даже при том, что высший приоритет имеет защита интерактора от изменений в контроллере, мы также должны защитить контроллер от изменений в интеракторе, скрыв детали реализации интерактора.

Заключение

Принцип открытости/закрытости — одна из движущих сил в архитектуре систем. Его цель — сделать систему легко расширяемой и обезопасить ее от влияния изменений. Эта цель достигается делением системы на компоненты и упорядочением их зависимостей в иерархию, защищающую компоненты уровнем выше от изменений в компонентах уровнем ниже.

Bertrand Meyer. Object Oriented Software Construction, Prentice Hall, 1988, p. 23 (Бертран Мейер. Объектно-ориентированное конструирование программных систем. Русская редакция, 2005. — Примеч. пер.).

Назад: 7. Принцип единственной ответственности
Дальше: 9. Принцип подстановки Барбары Лисков