Книга: Нелокальность: Феномен, меняющий представление о пространстве и времени, и его значение для черных дыр, Большого взрыва и теорий всего
Назад: 2. Истоки нелокальности
Дальше: Волшебство в механицизме

Механистическая Вселенная

Эти исторические перипетии начались с одной из самых известных встреч в истории западной мысли, с события, которое было бы здорово увидеть своими глазами, вернувшись в прошлое, имей мы машину времени. Согласно рассказу Платона, в 451 или 450 г. до н.э. Парменид, ведущий философ того времени, и его самый известный ученик Зенон отправились в Афины из своего родного города Элея в южной Италии. Они остановились в доме выдающегося политического деятеля сразу за городскими стенами. Однажды к ним заглянул не кто иной, как подающий надежды молодой афинский философ Сократ.
Само понятие философии (как в Греции, так и во втором месте ее зарождения, Китае) существовало тогда всего лишь на протяжении жизни нескольких поколений. Это был принципиально новый способ понимания того, что происходит в мире. В повседневной жизни, когда мы спрашиваем «почему?», цель обычно заключается в том, чтобы узнать побудительные причины, заставившие человека сделать то, что он сделал. Традиционная мифология распространяла этот образ мышления и на мир природы. Почему произошло землетрясение? Потому что Посейдон рассердился на осквернение его храма. Такие объяснения не проводят различия между локальностью и нелокальностью. Иногда боги действуют нелокально (они могут щелкнуть пальцами и добиться своего), а иногда они действуют локально (отправляют посланника, чтобы вершить свою волю). Для мифологии это незначительная деталь.
Философы были теми, кто считал эти рассказы, завязанные на персонажах, неудовлетворительными. Даже если допустить существование Посейдона, как он мог вызвать землетрясение? Какие правила определяли его возможности? Философов не волновал повод — они хотели знать механизм. Категории локальности и нелокальности приобрели новое значение. Естественно-исторические объяснения, как правило, локальны. По опыту вы знаете, что передвинуть что-то силой воли невозможно — для этого нужно подойти и приложить усилие или отправить кого-то, чтобы он сделал это за вас. Первый философ, которого мы знаем по имени Фалес, предположил, что землетрясения происходят потому, что суша плавает в подземном океане как неустойчивая лодка, иногда покачиваясь туда-сюда. Причина напрямую связана со следствием.
Но локальность вызывала у Парменида тошноту. Он был не так уж уверен в том, что мы можем доверять повседневному опыту, и в том, что можно разделить мир на части и постигать его кусочек за кусочком. Защищая этот тезис перед Сократом в Афинах, Зенон утверждал, что локальные понятия, такие как движение, изменение и индивидуальность, приводят к логическим парадоксам. В истории сохранилось девять таких парадоксов; десятки других, возможно, затерялись в веках. Самым глубоким и оказавшим самое большое влияние был парадокс абсолютной делимости. Если некоторый объект можно разделить на две части, затем на четыре, на восемь и так до бесконечности, то в конечном итоге он будет состоять из геометрических точек, каждая из которых не имеет размера. Когда вы захотите собрать этот предмет обратно, вы столкнетесь с проблемой, поскольку никакое число точек, не имеющих размера, не составит в целом что-то, имеющее размер. Из этого Зенон делал вывод, что действительность на самом деле нельзя разделить на части.
Сократ жаловался, что все это было выше его понимания. Доводы Зенона «отрицают самоочевидную вещь», как писал один греческий философ более позднего периода. Но именно поэтому они вызывали такое сильное беспокойство. Утверждать, что ничто не состоит из более мелких кусочков, казалось безумием, однако рассуждения выглядели основательно. В том доме в Афинах Парменид и Зенон положили начало интеллектуальному кризису. В течение многих десятилетий после этого люди проезжали пол-Греции, чтобы своими ушами услышать споры, которые за этим последовали.
Современные математики считают, что Зенон был в целом прав: что-то теряется, когда вы делите непрерывный объект на бесконечно малые части. Число геометрических точек в континууме неисчислимо — в буквальном смысле неисчислимо. И если вы не можете посчитать их, то не можете и сложить вместе. Наша обычная интуиция, подсказывающая, что целое является суммой своих частей, здесь не работает. У континуума нет никакого присущего ему масштаба; размер набора точек не получается из размера каждой точки, он должен определяться отдельно. «Одно из толкований парадоксов Зенона состоит в том, что в принципе невозможно получить физический масштаб из континуума», — говорит физик-теоретик Фэй Даукер из Имперского колледжа Лондона.
Хотя физики примирились с континуумом, многие все еще считают эту идею нарушающей порядок. Великий физик Ричард Фейнман писал: «Меня беспокоит, что, согласно физическим законам, как мы понимаем их сегодня, компьютеру требуется бесконечное число логических операций для расчета того, что происходит в любой сколь угодно крошечной области пространства за любой сколь угодно крошечный период времени. Как все это может происходить в такой крошечной области пространства? Почему должно требоваться бесконечное количество логических операций для выяснения того, что будет происходить с одним крошечным кусочком пространства/времени?»
Затруднения такого рода заставили многих греческих философов предположить, что материя не бесконечно делима, но состоит из дискретных строительных блоков. Атомисты как в воду глядели. Когда читаешь их записи, которые сохранились до наших дней, кажется, что это учебник физики для первокурсников в стихотворной форме. Педанты могут фыркнуть и сказать, что античные атомы были совсем не похожи на современные, но общая концепция устройства мира, разработанная Демокритоми другими философами в V в. до н.э., была удивительно близка к той, которая сложилась в современной физике. Все, что происходит в природе, утверждали атомисты, получается из формы, движения и пространственного расположения крошечных строительных блоков. Они верили, что все чувства, которыми мы наслаждаемся, — вкус, цвет, запах — порождаются потоками атомов, которые извергаются объектами и сталкиваются с нашими телами. Вид предметов буквально лезет в глаза, горечь пронзает язык.
Понятие пространства придумали атомисты. Они были первыми философами, которые утверждали, что материи необходимо место, чтобы в нем существовать и перемещаться. Один из преемников Демокрита, Лукреций, писал: «Вот почему несомненна наличность пустого пространства:/Без пустоты никуда вещам невозможно бы вовсе/Двигаться было». Пространство определяет положение, скорость, размер и форму атомов. Оно бесконечно во всех направлениях и заполнено неисчислимым разнообразием миров. Эта космологическая картина, радикальная для своего времени, оказалась решающей в конечном триумфе атомизма.
Если бы атомы были атлетами, а пространство — игровой площадкой, локальность играла бы роль свода правил. Как и современные физики, атомисты различали два аспекта локальности. Во-первых, пространство отделяет атомы друг от друга и обеспечивает каждому из них индивидуальность. Это принцип отделимости, который Эйнштейн считал важнейшим для физики и который квантовая физика, похоже, нарушает. Во-вторых, пространство диктует, как атомы влияют друг на друга. Атомисты полагали, что атомы взаимодействуют только при прямом контакте. Пока атомы не столкнутся, они движутся в пространстве по прямым траекториям, независимо от присутствия друг друга. Это ранняя версия принципа локального действия, который Эйнштейн формализовал в своей теории относительности. Он позволяет объяснять любое событие как результат более ранних событий.
Атомисты не приводили никаких реальных доводов в пользу локальности. Они даже не выдвинули ее как предварительную гипотезу, которую нужно подтверждать в экспериментах, — у них еще не было понятия эмпирической науки. Вместо этого они сочли локальность очевидной истиной, поскольку воздействие тел друг на друга на расстоянии разорвало бы причинно-следственную связь событий. Это сделало бы Вселенную непостижимой.
Атомизм был первой «теорией всего». Несмотря на ряд пробелов, едва ли существовало жизненное, погодное или небесное явление, которому атомисты не придумали бы объяснения. Они были основоположниками механистической картины мира, представления о Вселенной как о часовом механизме. Современные термины, такие как «квантовая механика», отражают это наследие. Безусловно, сам Демокрит не думал о машинах, эта аналогия появилась столетия спустя, когда машины стали более привычным явлением. Когда философы и ученые говорят о механизме, они всего лишь имеют в виду систему взаимосвязанных элементов, а не хитрую конструкцию, собранную с некоторой целью. То, что атомы делают, дает им предназначение, не наоборот. Отдельные атомы безжизненны, безвольны и неодушевленны. Если один из них перемещается, то только потому, что другой атом был этому причиной. Такое отсутствие цели и смысла оттолкнуло большинство современников Демокрита. Платон хотел сжечь его книги. По сей день физика создает у многих людей — даже у физиков — впечатление холодной, абстрактной, бесчеловечной науки.
Возможно, так и есть. Но она также раскрепощает нас. Атомизм вышел за рамки человеческого опыта. Старые мифологические толкования объясняли землетрясения эмоциями: одно сложное явление — другим сложным явлением (да и можно ли считать это объяснением?). Это не более чем перекладывание ответственности. Настоящее объяснение должно разбивать что-то на более простые части и показывать, как они взаимодействуют, чтобы получилось это что-то. Кому захочется вернуться к мыльной опере греческой мифологии, в которой города разрушались и голод обрушивался на земли из-за любовных похождений Зевса? Как отмечал литературный критик Стивен Гринблатт в своей книге «Ренессанс», получившей Пулитцеровскую премию, последователи Демокрита создали полностью атеистическую философию в духе «живи сегодняшним днем», в которой люди сами создают смысл своей жизни. Лукреций писал: «Природа свободной/Сразу тебе предстает, лишенной хозяев надменных,/Собственной волею всё без участья богов создающей».
Самый известный философ античности нашел компромисс между атомистами и их хулителями. Насколько мог видеть Аристотель, мир кишит жизнью, и жизнь имеет смысл, следовательно, логично предположить, что неодушевленные предметы также служат какой-то цели. Яблоко падает в направлении центра Земли, потому именно там оно и должно быть, согласно великому замыслу. Его движение самопроизвольно и не требует внешней причины. Аристотель также вернулся к идее о том, что звездами и планетами управляют одни законы, а яблоками и стрелами — другие. А еще он отверг утверждение атомистов о том, что объекты состоят из неделимых частей. Несмотря на парадоксы Зенона, Аристотель думал, что материя непрерывна, и разработал сложную теорию континуума, которая предвосхитила современную математику. Свойства объектов не могут сводиться к расположению атомов.
Аристотель питал отвращение к пустоте. Объекты, по его замыслу, соединяются друг с другом как кусочки пазла без каких-либо пустот между ними, и положение данного объекта определяется относительно соседних объектов, а не какой-то абстрактной структуры, существующей независимо от материи. Поскольку даже «пустое» пространство уже набито всякой всячиной, свет не может быть потоком атомов, перемещающихся в пространстве от яркого объекта к нашим глазам. Вместо этого Аристотель считал, что свет — это импульс, передающийся через среду. Яркий свет передает энергию среде непосредственно рядом с собой, и волна преобразования распространяется через пространство непрерывным движением, как легкая волна на поверхности пруда. Ни одна частица не перемещается; вместо этого каждый маленький кусочек среды передает импульс следующему — как дети, играющие в игру «испорченный телефон». Современники Аристотеля в Китае также представляли мир в виде непрерывной среды, ци.
Если уж на то пошло, образ мыслей Аристотеля в большей степени соответствовал наблюдениям, чем атомизм. Тем не менее Аристотель не пытался давать определенных предсказаний, которые могли бы подтвердить или опровергнуть его теорию. Как и Демокрит, прежде всего он стремился сделать Вселенную постижимой.
Несмотря на все отличия, теория Аристотеля позаимствовала многие существенные черты атомизма, включая локальность. Мир рассматривался в ней как система объектов, взаимодействующих исключительно при соприкосновении. Чтобы объект отклонился от своего естественного направления движения, что-то должно толкнуть его. Аристотель писал: «Непосредственный фактор изменения положения тела должен либо соприкасаться, либо образовывать непрерывное целое с перемещаемым объектом, согласно нашим наблюдениям, дело всегда обстоит именно так». Так же, как и атомисты, Аристотель пытался разработать теорию пространства. С его точки зрения, наличие положения было определением существования; отсутствие такового — определением небытия. Он писал: «То, что не существует, нигде не находится. Где, например, находится полукоза-полуолень или сфинкс?»
Хотя Аристотель писал, что локальность верна всегда, он приводил несколько исключений. Эти аномалии известны со времен Фалеса, который отметил один из многих странных камней на нашей планете, естественный магнит, и его способность притягивать кусочки железа. В одной из областей в северной Греции, известной как Магнисия, были крупные месторождения этого минерала, благодаря чему появилось название, под которым мы знаем такие материалы сегодня: магниты. Фалес также восхищался янтарем, кусочек которого, если энергично потереть его о ткань, заставляет волосы вставать дыбом. По-гречески янтарь — elektron, отсюда произошло слово «электрический». Китайские ученые обнаружили эти явления примерно в то же самое время, однако они быстрее своих западных коллег нашли магнетизму практическое применение.
Греки не могли объяснить, как магнетит и янтарь влияли на объекты, которых они не касались. Хуже того, это влияние заключалось в притяжении. В мире, где воздействие происходит только при прямом контакте, объекты взаимодействуют только одним способом: они сталкиваются друг с другом и отскакивают, как бильярдные шары. Они отталкивают, не притягивают. Попытка объяснить, как отталкивание переходит в притяжение, поставила философов в тупик. Атомисты думали, что эти вещества испускают пары, которые вытесняют воздух вокруг них, создавая область низкой плотности, в которую устремляется окружающий воздух, увлекая железо или волосы за собой. Аристотель решил эту проблему проверенным временем способом: проигнорировал ее.
Магнетизм и статическое электричество были не единственной головоломкой. Наблюдались также явления, причиной которых в наши дни считается гравитационное притяжение, такие как падение тел, океанские приливы и движение планет по орбитам. Аристотель не видел между ними связи. С его точки зрения, падение — это просто привычка тел, приливы происходят из-за ветров, порождаемых солнечным теплом, а планеты катятся по гигантским вращающимся прозрачным сферам. Атомистысвязывали эти явления воедино и объясняли их структурой Солнечной системы. По их мнению, потоки частиц кружатся в космосе, создавая вихри, в которых скапливаются планеты, как груда листьев, попавших в речной водоворот. Если тело не поспевает за круговым потоком, окружающие частицы подталкивают его внутрь. «Упасть» — значит быть увлеченным в сторону центра вихря. Говоря кратко, тяготение — это не сила притяжения, как потом стали думать ученые; это прямое физическое воздействие, толчок сверху.
Теория Аристотеля имела вес в буквальном смысле: в переводе на английский сохранившиеся до наших дней труды занимают 6000 страниц. Греко-римские ученые и ученые исламского мира основывались на его работах, но бо́льшая их часть была потеряна или забыта на фоне общего угасания европейской интеллектуальной жизни в начале Средних веков. Никаких крупных достижений в понимании локальности не было на протяжении еще двух тысячелетий. Европейские писцы начали заново открывать Аристотеля в XII в., причем окольными путями, через латинские переводы с арабского, и это знание настолько затмевало все известное им, что, должно быть, походило на энциклопедию, забытую на Земле пришельцами из более развитой цивилизации. Они расшифровали и перевели эти 6000 страниц, а потом на протяжении веков анализировали их, критиковали и увязывали с христианскими верованиями — эта деятельность получила название «схоластика». Все, что интересовало Аристотеля, интересовало и их. Аристотель считал, что пространство играет важную роль, поэтому и они думали, что пространство играет важную роль. Аристотель придерживался принципа локальности, поэтому и они придерживались принципа локальности. Они полагали, что даже Бог не мог избежать локальности, хотя этот принцип в его случае был чисто теоретическим: Бог существовал всюду, следовательно, он автоматически был в прямом контакте со всем. «Никакое воздействие, каким бы могущественным оно ни было, не совершается на расстоянии, кроме воздействий через среду, — писал выдающийся философ-схоласт Фома Аквинский. — Но это свойственно великой силе Бога, Он напрямую воздействует на все вещи. Следовательно, ничто не находится далеко от Него».
Однако чем больше ученые вдумывались в теорию Аристотеля, тем больше разочаровывались, поэтому они расширили масштабы своей деятельности от восстановления идей Аристотеля до их усовершенствования. То, что Аристотель не объяснял магнетизм и статическое электричество, было заметным слабым местом. В конце 1500-х гг. английский врач Уильям Гильберт (который позже служил личным врачом королевы Елизаветы I) показал, что магнит притягивает железный брусок, даже если поместить между ними что-то, создающее препятствие любым предполагаемым парам или посредникам. Казалось неоспоримым, что магниты воздействуют на расстоянии. Гильберт никак не мог найти естественного объяснения и склонялся к сверхъестественному: магнит «похож на живое существо», и он притягивает железо в процессе «соития».
Аристотелева космология также казалась многим сомнительной. Разве Вселенная могла быть конечной по размеру и ограничиваться гигантской вращающейся прозрачной сферой? У такой сферы не было бы внешней точки отсчета, чтобы определять ее вращение. В начале 1500-х гг. именно эта несогласованность вдохновила Николая Коперника поместить Солнце, а не Землю в центр Солнечной системы. С его космической заменой вся Аристотелева система начала рушиться. Аристотель говорил, что тела падают вниз, потому что таково направление к центру Вселенной. В гелиоцентрической системе мира это уже неверно. Таким образом, Коперник создал стимул для альтернативного объяснения тяготения. Поскольку центр Вселенной больше не задавал направление движения тел, Вселенная могла не иметь центра вообще. Она могла быть бесконечной в полном соответствии с основополагающим принципом атомизма. Заново открыв также работы Лукреция, многие ученые сообразили: устройство космоса было доказательством существования атомов. Это был не последний раз, когда философы и физики узнавали о малом, изучая большое.
Атомизм достиг расцвета во времена Рене Декарта в середине XVII в. Сегодня Декарта помнят как автора утверждения «Я мыслю, следовательно, существую» и Декартовых координат, используемых на миллиметровке. Но это всего лишь два элемента грандиозного проекта — попытки превзойти самого Аристотеля. Декарт писал другу: «Я решил объяснить все явления природы, т.е. всю физику». И он преуспел: его теория была первой за 2000 лет новой теорией всего, которая могла претендовать на такую же всесторонность, как и Аристотелева. Декарт полностью объединил систему мира Коперника с механистической философией, и его идеи послужили манифестом Революции в науке.
Декарт подчеркивал различия между собственной теорией и классическим атомизмом, возможно, чтобы обосновать свою претензию на новизну, но преемственность очевидна. Мир состоит из частиц, взаимодействующих в пространстве. Тело не имеет непостижимых врожденных свойств или склонности искать свое законное место во Вселенной, как полагал Аристотель. Это просто геометрическая фигура. У нее есть размер и форма, но нет цвета, текстуры или массы. Зная всего несколько чисел (Декартовы координаты), чтобы указать положение тела, вы знаете о нем все, что только можно знать. Едва ли все могло быть проще.
Целью Декарта была постижимость: сделать тайны природы абсолютно прозрачными. Локальность была необходима для достижения этой цели. Тела взаимодействовали строго локально: они двигались свободно и прямолинейно, пока не столкнутся одно с другим; только тогда они изменяли направление движения. Как Демокрит и Аристотель, Декарт не предложил серьезных доказательств этого принципа. «Такие вещи не требуют доказательств, потому что они очевидны сами по себе», — писал он. В повседневной жизни нам приходится дотрагиваться до предметов, чтобы заставить их совершить что-то, и Декарт предположил, что контактное воздействие определяет и все остальное во Вселенной. Проблема заключалась в том, что это не так. Декарт проделал такую тщательную работу по применению принципа локальности, что ненамеренно показал степень его несостоятельности.
Например, Декарт поддерживал старое атомистическое представление о тяготении как о толчке сверху. В его теории планеты находятся в центре космических воронок, вихревые движения которых направляют частицы в сторону их центра. Что касается объяснения того, почему движения планет согласованы между собой, то в представлениях Декарта было много правды. Он почти правильно описывал форму Солнечной системы и предвосхитил современные теории формирования планет. Но его теория была ошибочна в деталях. Помимо многих других недостатков она подразумевала, что тела должны падать в направлении оси вращения Земли, где вихревые движения исчезают, а не к ее геометрическому центру. Если бы это было правдой, то яблоко, брошенное недалеко от Северного полюса, «падало» бы вбок, а не прямо вниз. Что касается магнетизма и статического электричества, то Декарт объяснял их частицами в форме крошечных винтов или рычагов. Об этой идее можно сказать лишь то, что она достойна приза за изобретательность.
Был ли механистический взгляд на Вселенную в целом правильным и требующим лишь кое-каких уточнений? Или его надо было отбросить? Это дилемма, с которой ученые борются всякий раз, когда натыкаются на исключения из какой-нибудь теории. Рассудительные люди не соглашаются с ним, но ответ очевиден только в ретроспективе, да и то далеко не всегда. В данном случае на кону было куда больше, чем одна теория. Бросить вызов механистической теории и ее центральному допущению о локальности означало бросить вызов науке вообще. Если допустить ее несостоятельность, значит ли это признать, что мир неподвластен разумному осмыслению? В некотором смысле удивительно, но ответ — «да». Чтобы «починить» механистическую теорию, участники Революции в науке должны были выйти за пределы самой науки: в область волшебства.
Назад: 2. Истоки нелокальности
Дальше: Волшебство в механицизме