Книга: Нелокальность: Феномен, меняющий представление о пространстве и времени, и его значение для черных дыр, Большого взрыва и теорий всего
Назад: Дебаты 1927 г.
Дальше: Статья ЭПР

Дебаты 1930 г.

К следующему Сольвеевскому конгрессу три года спустя Эйнштейн разработал другой сценарий, чтобы обосновать свою точку зрения. Это был первый черновой вариант аргумента, вокруг которого будут строиться все последующие споры. Предположим, что у нас есть коробочка, заполненная фотонами, которые со стуком перекатываются в ней, как конфетки «Тик Так» в пластмассовом контейнере. Один из них выскакивает через отверстие и улетает в космос. Коробочка с остальными фотонами отскакивает в противоположном направлении. Поскольку вся система частиц описывается единственной волновой функцией, судьбы коробочки и вылетевшего фотона остаются связанными. Некоторое время спустя вы измеряете положение коробочки, зная которое можно вычислить положение фотона.
Это означает одно из двух. Либо измерение коробочки оказывает какое-то воздействие на фотон, либо оно не оказывает никакого воздействия на фотон. Согласно копенгагенской интерпретации, верен первый вариант. То есть перед тем, как вы измеряете коробочку, и она, и фотон находятся в состоянии неопределенности, не имея определенного положения. После того как вы ее измеряете, волновая функция коллапсирует и фотон появляется в каком-то месте. Независимо от того, каким прибором вы проводили измерения, коробочка должна действовать как пульт дистанционного управления. Нажмите кнопку и — бац! — частица немедленно воплощается из неопределенного тумана потенциальной возможности в реальный импульс света. Поскольку фотон перемещается со скоростью света, сигнал от «пульта дистанционного управления» должен распространяться быстрее света, чтобы догнать его. «Если бы происходило такое физическое воздействие со стороны B на улетающий квант света, — писал Эйнштейн позже, — это было бы действие на расстоянии, которое распространяется со сверхсветовой скоростью. Такое предположение, конечно, логически возможно, но оно очень сильно противоречит моему физическому чутью». Согласно второму варианту — когда измерение никак не влияет на фотон — частица уже существует в том месте, где вы ее обнаруживаете, даже если волновая функция «слепа» к этому факту. Копенгагенская интерпретация вводит в заблуждение, и вы думаете, что у вас есть пульт дистанционного управления, в то время как его, увы, нет.
В общем, этот новый сценарий излагал ту же самую дилемму, что и прежде: квантовая теория либо нелокальна, либо неполна. К сожалению, одна особенность доклада Эйнштейна в 1930 г. посеяла многолетние сомнения даже среди его сторонников. Эйнштейн заметил, что вместо измерения положения коробки можно измерять ее импульс. То есть у вашего пульта дистанционного управления как будто есть две кнопки: одна заставляет фотон материализоваться с определенным положением, а другая заставляет его материализоваться с определенным импульсом. Но эта дополнительная функциональность вторична. Главная проблема в том, что у вас вообще есть пульт дистанционного управления.
Несколько лет спустя Эйнштейн попытался прояснить эту мысль: «То, что действительно существует в точке B, не должно, следовательно, зависеть от того, какое измерение выполнено в области пространства A; оно также должно быть независимо от того, выполнено ли вообще какое-либо измерение в области пространства А [курсив автора]». Мой предшественник из журнала Scientific American, который работал над статьей с Эйнштейном, однажды сказал мне, что этот великий человек не очень-то благосклонно воспринимал редактирование. Но если бы редактор уговорил его вычеркнуть первую часть упомянутого предложения и оставить только ту часть, которая идет после точки с запятой, мир был бы мудрее.
Отчасти из-за этой путаницы разговор между Эйнштейном и Бором уходил в сторону на двух Сольвеевских конгрессах подряд. Бор поддался на отвлекающий маневр выбора. По его мнению, Эйнштейн утверждал, что можно установить и точное положение, и точный импульс фотона одновременно, а именно это исключается принципом неопределенности Гейзенберга. Если бы запутанные частицы нарушили этот принцип, то квантовая механика была бы не просто неполной, а неверной. Предание гласит, что великий датчанин полночи не спал, анализируя процедуру измерения, и утром торжествующе объявил, что принцип неопределенности устоял и квантовая механика спасена. Но согласно другим участникам дискуссии, Эйнштейн больше не спорил с принципом неопределенности. Он признал, что точные измерения положения и импульса были взаимоисключающими, и считал квантовую механику логически непротиворечивой теорией. Он целил в копенгагенскую интерпретацию, сторонники которой были не в состоянии честно признаться в нелокальности, которую подразумевало их представление.
Назад: Дебаты 1927 г.
Дальше: Статья ЭПР