3. Локальность Эйнштейна
В колледже Эйнштейн нередко прогуливал занятия. Он был невысокого мнения об уровне преподавания физики. Его преподаватели обходили стороной все интересное, в том числе тот переполох, который подняла теория электромагнетизма Максвелла. Эйнштейн проводил большую часть своего времени в кафе «Метрополь» в Цюрихе, изучая великие философские труды Юма, Канта, Маха. Если бы не конспекты его друзей, он, возможно, так и не получил бы высшего образования. Преподаватели, в свою очередь, находили его слишком самодовольным и давали ему плохие рекомендации. Начальникам лабораторий по всей Европе пришлось позже молча сожалеть, что они отклонили заявление самого Альберта Эйнштейна о приеме на работу.
В самом начале своей карьеры Эйнштейн не придавал особого значения локальности. Он был ньютонианцем. В первых научных статьях он предполагал, что частицы действовали друг на друга на расстоянии. Если законы Ньютона противоречат уравнениям Максвелла, тем хуже для Максвелла. В частности, если законы Ньютона утверждают, что все скорости относительны, то и скорость света должна быть относительной, о чем бы ни говорили уравнения Максвелла. Поэтому Эйнштейн подправил эти уравнения, чтобы сделать скорость света зависимой от скорости его источника, создав новую версию теории электромагнетизма, которая была нелокальной. Именно тогда он изменил свое мнение. Пересмотренная теория внесла такие серьезные изменения в оригинальную версию теории Максвелла, что эксперименты ее исключили. Больше того, она предсказывала, что одни люди должны были видеть, что электромагнетизм подчиняется уравнениям Максвелла в их оригинальной форме, а другие — видеть искаженную версию — такая перспектива оскорбляла эгалитарные чувства Эйнштейна.
В момент прозрения Эйнштейн понял, что скорости могут быть относительными,а свет в то же время может устанавливать абсолютную планку скорости. В этом нет никакого противоречия, как думали все остальные. Нужно только быть аккуратными, говоря об относительной скорости. Обычное правило, воплощенное в законах Ньютона, состоит в том, что относительная скорость вычисляется путем складывания или вычитания: бейсбольный мяч, летящий со скоростью 30 км/ч навстречу поезду, двигающемуся со скоростью 130 км/ч, перемещается со скоростью 160 км/ч относительно пассажира поезда. Все же это правило содержит негласное и ничем не подкрепленное предположение о мгновенной передаче информации или, что эквивалентно, о нелокальности.
Эйнштейн осознал это, когда размышлял о том, что на самом деле подразумевает сравнение скоростей. Он использовал — в действительности впервые — один из самых любимых у современных физиков стилей рассуждения, «операциональное» мышление, которое заключается в том, что вы спрашиваете, откуда вам известно то, что известно. Часто обнаруживается, что существующие убеждения необоснованны и даже неверны. Между прочим, этот стиль может пригодиться в любом споре. Чтобы поднять уровень политического спора, спросите, как происходит что-то. Например, если кто-то поддерживает или выступает против государственного финансирования системы здравоохранения, спросите, как вообще устроено медицинское страхование. Те, кто очень уверен в своем мнении, увидят собственное невежество или по крайней мере признают, что вопрос не так уж прост.
В случае относительных скоростей Эйнштейн заметил, что для измерения скорости мяча тому, кто его бросает, и пассажиру поезда необходим секундомер. И они не могут заведомо считать, что их часы идут одинаково. Это нужно установить, сравнивая показания часов, а для этого необходимо обменяться какими-то сигналами. Если сигнал передается между ними мгновенно, то они могут подтвердить, что час для одного человека — это то же самое, что час для другого. Но если передача сигнала занимает время, они не могут быть уверены в этом, поскольку их положение изменится, пока сигнал будет в пути, что создаст задержку. Также они не могут знать, что километр для одного из них равен километру для другого. Подразумевается, что измерение длины проводится в один и тот же момент, т.е. сигнал может мгновенно переместиться от одного конца объекта к другому. Если наблюдателям доступны только сигналы, передающиеся с ограниченной скоростью, измерение может быть ошибочным из-за того, что они или объект измерения движется.
Эйнштейн нашел альтернативу ньютоновскому правилу сложения скоростей, которая учитывает время передачи сигнала, тем не менее гарантируя, что с точки зрения того, кто бросает мяч, и с точки зрения пассажира поезда это выглядит совершенно эквивалентно. Согласно его правилу, относительная скорость меньше, чем простая сумма. Для пассажира мяч летит со скоростью чуть-чуть меньше, чем 160 км/ч. Чем быстрее летит мяч, тем больше его относительная скорость отличается от предсказаний законов Ньютона. Если же вместо того, чтобы бросать мяч, посветить фонариком, что так интересовало теоретиков XIX в., то световые волны будут перемещаться со скоростью 1080 млн км/ч относительно того, кто светит, и со скоростью 1080 млн км/ч относительно пассажира поезда. Собственное движение пассажира перестает иметь значение. Таким образом свет перемещается со скоростью, которая одинакова для всех наблюдателей даже при том, что их собственные скорости всегда относительны.
Пересмотренная Эйнштейном версия понятия относительной скорости объясняла все эксперименты, которые озадачивали его современников. Несоответствия исчезали — не было никакой причины подозревать, что природа злонамеренно мешала экспериментаторам. Эти успехи привели к тому, что он уже не был готов мириться с нелокальностью.
•
Поддержав идею относительности всех скоростей, Эйнштейн устранил основное противоречие между законами движения и электромагнетизмом. Это произвело впечатление даже на тех преподавателей, которых он раздражал как студент, и один из них указал на некоторые следствия, упущенные нахальным молодым гением. Поправки в такие фундаментальные понятия, как скорость, решают не одну проблему, а делают гораздо больше. Скорость определена в пространстве и во времени, поэтому новая интерпретация Эйнштейна изменила и то, что физики подразумевают под этими понятиями. Поскольку люди, перемещающиеся с разными скоростями, не могут обеспечить синхронизацию часов, временные интервалы зависят от их скорости, так же как и расстояния в пространстве, по похожим причинам. Но комбинация временного интервала и расстояния в пространстве — расстояние в пространстве-времени — не зависит от скорости; это объективный факт, насчет которого ни у кого нет разногласий. Именно так теория относительности Эйнштейна привела к объединению пространства и времени в единое понятие, пространство-время. Для сегодняшних физиков это объединение — истинное значение теории, а морока с поездами и сигналами была только одним из способов сделать это открытие.
Мы все еще воспринимаем пространство-время как пространство и время, но ни один человек не обладает исключительным правом разделять пространство-время на «пространство» и «время». То, что является чисто пространственным для одного наблюдателя, является комбинацией пространственного и временного для другого. Для пассажира поезда газета на коленях находится «здесь» (чисто пространственное обозначение), но для наблюдателя за пределами поезда газета — это движущийся объект (комбинация пространственного и временного). У этих двух людей также разные взгляды на понятие «сейчас» и разные мнения по поводу того, какие события происходят одновременно. Слово «одновременно» — это чушь с точки зрения теории относительности: объективно такой вещи не существует.
Один кусочек пазла все же не подходил к остальным: гравитация. Теория относительности в ее оригинальной версии применима только в особом случае нулевой гравитации. В 1915 г. Эйнштейндополнил картину с помощью своей общей теории относительности, согласно которой сила тяготения возникает благодаря полю, аналогичному электромагнитному. Причина искривления траектории бейсбольного мяча в полете не в том, что Земля действует на мяч с некоторой силой на расстоянии, как предполагала теория Ньютона. Мяч реагирует на поле тяготения в непосредственной близости от него. Когда масса Земли немного смещается (например, когда геологическая активность или течения в океане перераспределяют вещество), поле тяготения немного изменяется. Это возмущение распространяется через поле со скоростью света, и, проходя через бейсбольное поле, оно изменяет поле тяготения в этом месте, так что при следующем броске мяч может падать чуть быстрее или медленнее.
Впрочем, гравитационное поле — это не просто какое-то поле. Оно играет особую роль в природе. Все другие поля действуют избирательно: электромагнитное поле, например, действует только на электрически заряженные объекты, и чем сильнее заряжен объект, тем быстрее он будет ускоряться. Гравитационное поле одинаково действует на все объекты. Все падает вниз с одним и тем же ускорением. Поле, таким образом, определяет путь всех объектов в отсутствие других сил. Но это и есть сама функция пространства. Таким образом, гравитационное поле, по мнению Эйнштейна, не расположено в пространстве, а является свойством пространства. Если структура пространства-времени похожа на ковер, а движущийся объект похож на мраморный шарик, катящийся по ковру, то поле тяготения Земли — это вздутие на ковре, которое отклоняет шарик в сторону.
Так же как неожиданный поворот в романе не меняет историю полностью, но все же может заставить вас пересмотреть свое отношение к более ранним событиям — персонаж, которого вы считали плохим, может на самом деле оказаться хорошим парнем, — так и общая теория относительности побудила физиков заново оценить теорию гравитации Ньютона. Его теория не является строго неправильной — она неполная. Она примерно описывает эффекты гравитации, но не в состоянии объяснить, как распространяется сила тяготения. Теория относительности отвечает на этот вопрос. Она реабилитирует туманные догадки Ньютона и Лейбница о том, что гравитация имеет какое-то отношение к природе пространства.