8
Математики старались найти все возможные объекты, подчиняющиеся алгебраическим правилам (А+В=В+А, A×В = В×А и т. п.). Первоначально правила были выработаны для положительных целых чисел, которыми пользовались, чтобы считать, например яблоки или людей. Числа совершенствовались: придумали нуль, дроби, иррациональные числа, т. е. числа, которые нельзя представить как частное от деления двух целых чисел, отрицательные числа – и все они по-прежнему подчинялись тем же алгебраическим правилам. Некоторые введенные математиками числа сначала представляли для людей трудности – трудно было представить себе половину человека, но сегодня в этом нет ничего сложного. Никто не представляет себе кровопролития и не испытывает моральных неудобств, услышав, что где-то на квадратную милю приходится в среднем 3,2 человека. Никто не пытается представить себе 0,2 человека; люди понимают, что означают эти 3,2: если умножить 3,2 на 10, получится 32. Таким образом, некоторые удовлетворяющие математическим законам явления представляют интерес для математиков, даже если они не всегда соответствуют реальной ситуации. Стрелки на плоскости можно «складывать», приставляя голову одной к хвосту другой, или «умножать» при помощи последовательных поворотов и сжатий. Так как эти стрелки подчиняются тем же алгебраическим правилам, что и обычные числа, математики называют их числами. Но чтобы отличать их от обычных чисел, их называют «комплексными числами». Для тех из вас, кто дошел в изучении математики до комплексных чисел, я мог бы сказать: «Вероятность события – это квадрат модуля комплексного числа. Если событие может произойти несколькими взаимоисключающими способами, вы складываете комплексные числа; если оно может произойти только в результате последовательных этапов, вы умножаете комплексные числа». Хотя эта формулировка может звучать более внушительно, я не сказал ничего нового – я просто использовал другие выражения.