18
Живая атмосфера: обнаружение признаков жизни в дальних мирах.
Джованна Тинетти
Атмосфера Земли
14 апреля 1969 г. был выведен на орбиту зонд «Нимбус-3», предназначенный для исследования состояния земной атмосферы с высоты около 1050 км. Среди его инструментов имелся спектрограф IRIS, способный анализировать спектр получаемого света и идентифицировать химические элементы и соединения, через которые прошел этот свет.
IRIS выявил, например, наличие водяного пара (H2O), углекислого газа (CO2) и озона (O3). Эти молекулы относительно легко обнаружить методом спектроскопии, поскольку они дают уникальный рисунок спектральных линий в инфракрасном диапазоне — полосе электромагнитного спектра непосредственно перед областью видимого света. Напротив, такие молекулы, как азот (N2), составляющий около 78% земной атмосферы, и кислород (O2, 21%), не выявляются спектрографом IRIS, поскольку не дают характерного расположения спектральных линий в инфракрасном диапазоне. Разумеется, состав атмосферы Земли был прекрасно известен задолго до измерений «Нимбуса-3», но благодаря этому спутнику мы впервые взглянули из космоса на свет атмосферы нашей планеты. Сегодня изучение атмосферы отдаленных планет вне Солнечной системы является одним из самых многообещающих направлений исследования в рамках поиска внеземной жизни. До сих пор нам не удалось напрямую обнаружить инопланетную жизнь, но, возможно, химические следы ее присутствия в дальних мирах позволят установить ее существование.
Именно этот вопрос я и хочу обсудить в данной главе: каким образом атмосфера планеты может рассказать о ее обитаемости? Для начала узнаем, как атмосфера нашей родной планеты пришла к своему нынешнему состоянию, поскольку она не всегда была такой, как сейчас. Когда Земля формировалась около 4,5 млрд лет назад, она состояла главным образом из водорода и гелия — самых распространенных газов в газопылевом диске, где образуются планеты. Скорее всего, эта примитивная атмосфера просуществовала недолго: водород и гелий очень легкие, и гравитационной силы относительно небольшой планеты типа Земли недостаточно, чтобы их удержать. Кроме того, эти газы сдувал в космос солнечный ветер — поток высокоэнергичных частиц от Солнца. В ту отдаленную эпоху он, вероятно, был интенсивнее нынешнего, поскольку протосолнце находилось на ранней стадии развития. Частые столкновения с другими космическими телами — астероидами и планетезималями — также приводили к потере первичного газового слоя вокруг Земли.
Изменение состава земной атмосферы произошло главным образом вследствие сочетания двух факторов: многократных вулканических извержений (они были обычны во времена, когда постепенно снижающаяся температура внутри Земли все еще оставалась очень высокой) и ударов комет и астероидов. Во время извержения вулкана в атмосферу поступает огромное количество водяного пара, углекислого газа и соединений серы, так что присутствие молекул этих веществ в современной атмосфере Земли не удивительно. Принято считать, что азот и большая часть воды попали на Землю с астероидами. Поскольку углекислый газ, молекулярный азот и водяной пар тяжелее водорода и гелия, атмосфера, состоящая из этих веществ, сохранялась лучше первичной. Этому способствовала и земная магнитосфера — магнитное поле, окружающее Землю вместе с атмосферой и защищающее их от солнечного ветра. Благодаря сочетанию подходящей температуры и наличия магнитосферы Земля обзавелась не только атмосферой, но и круговоротом воды. На нашей планете вода, испаряющаяся с поверхности суши и океанов, по большей части конденсируется на определенной высоте, образуя облака, откуда водяной пар возвращается на землю в виде осадков. Например, атмосфера Венеры является настолько горячей, что испарившаяся вода не может конденсироваться в облака. В сочетании с отсутствием у Венеры защитной магнитосферы это привело к тому, что планета миллионы лет безвозвратно теряла воду. На сегодняшний день Венера является чрезвычайно сухой планетой.
Эти процессы объясняют появление в земной атмосфере различных газов, за исключением двух — молекулярного кислорода и озона, ныне содержащихся в ней в значительных количествах. Между тем молекулярный кислород исключительно химически активен и с легкостью вступает в реакции с другими веществами. В рамках химии трудно объяснить тот факт, что он составляет чуть более одной пятой атмосферы Земли.
Но дело не только в химии.
Признаки или маркер жизни
На Земле молекулярный кислород (O2), состоящий из двух соединенных друг с другом атомов кислорода, а также озон вырабатываются живыми организмами. В результате фотосинтеза земные высшие растения, например деревья и цветущие растения, становятся практически неисчерпаемым источником кислорода, что и объясняет его нынешнее изобилие в атмосфере. Молекула озона (O3), состоящая из трех атомов кислорода, возникает вследствие разрушения и рекомбинации молекулярного кислорода, из-за чего озон считается показателем высокой концентрации кислорода на Земле. До появления жизни количество кислорода было пренебрежимо мало, о чем свидетельствует химический состав древнейших минералов. На сегодняшний день принято считать, что первые живые организмы на нашей планете — прокариоты — возникли около 3,8 млрд лет назад. Это были относительно простые организмы, предшественники современных бактерий, — простые, но исключительно живучие и приспособляемые. В последующие 600 млн лет прокариоты колонизировали Землю и процветали, не ведая конкуренции, осваивая всевозможные комбинации «пищи» и метаболизма. Например, метаногены, как явствует из названия, выделяют в качестве отходов жизнедеятельности метан, а Shewenella putrefaciens питается трехвалентным железом (Fe3+)и выделяет двухвалентное железо (Fe2+), запасая высвобождающуюся при этом энергию. Другие прокариоты питались сульфатами, нитратами и цианидами. Если бы мы смогли получить инфракрасный спектр Земли в то время, то увидели бы на нем признаки наличия водяного пара, углекислого газа и, возможно, незначительного количества метана и соединений азота или серы, выделяемых этими организмами. Признаки озона совершенно точно отсутствовали бы. Для большинства наших древних предков кислород был таким же смертельным ядом, каким для нас является цианистый калий. Лишь когда концентрация кислорода в атмосфере стала достаточно высокой, возобладал дарвиновский естественный отбор и некоторые прокариоты научились пользоваться кислородом. Это стало ключом к успеху.
Эволюция от прокариот к более развитым одноклеточным организмам (эукариотам), а затем к многоклеточным заняла около миллиарда лет и стала одним из самых важных событий в истории жизни на Земле. Именно кислород, обеспечивающий намного больше энергии, чем все, что питало предшествующие формы, объясняет высокие темпы развития земной жизни. Организмы осваивали сложные процессы, меняющиеся на протяжении сотен миллионов лет в соответствии с текущими условиями существования. В последние 500 млн лет, отличающиеся умеренным климатом и изобилием пищи, успешной стратегией выживания стал гигантизм, о чем свидетельствует эра динозавров. Однако в период сокращения кормовой базы и ухудшения климата лидерство перехватили не столь крупные, но более адаптивные теплокровные — млекопитающие. Наши древнейшие предки прокариоты не исчезли с лица Земли, но вынуждены были спрятаться от кислорода в такие места, как гидротермальные источники и скалы с высоким содержанием металлов и силикатов. Эти укромные уголки до сих пор служат средой обитания экзотических сообществ микробов, вероятно очень похожих на самых первых обитателей Земли.
Еще одним гениальным достижением земной жизни стала эволюция самого важного биохимического процесса в известной нам Вселенной — фотосинтеза. С его помощью растения и некоторые бактерии могут запасать энергию солнечного света в химических связях клеток своих тканей. Не будь фотосинтеза, высокоразвитая жизнь не смогла бы развиться из-за нехватки пищи или возобновляемой энергии, достаточной для поддержания сложных организмов. Высшие растения имеют фотосинтезирующий пигмент хлорофилл, способный улавливать солнечный свет и производить глюкозу и молекулярный водород. Таким образом, высокое содержание кислорода в атмосфере является прекрасным примером «биомаркера» — признака, что на планете имеется или имелась когда-либо в прошлом жизнь. Для полноты картины следует упомянуть пурпурные сульфобактерии — чрезвычайно древние фотосинтезирующие организмы, использующие в процессе фотосинтеза не воду, а сероводород (H2S). В отличие от зеленых растений, эти бактерии не выделяют кислород.
Теория Лавлока и определение биомаркера
Результаты спектроскопии, проведенной такими спутниками, как «Нимбус-3», полностью изменили наши представления о жизни на Земле. Со стороны она предстает одной из множества возможных форм существования, которые можно обнаружить, во всяком случае теоретически, направив телескоп на другую планету. Полеты к Венере и Марсу космических аппаратов, не обнаруживших никаких следов жизни, положили конец мифу об обитаемости двух ближайших к нам планет. В отношении Марса еще остается надежда найти подземные организмы или окаменевшие остатки погибших организмов (Моника Грейди писала об этом в главе 7). Некоторые шансы на обитаемость имеют ряд спутников Юпитера или Сатурна, где жизнь могла возникнуть самостоятельно благодаря разогреву приливными силами вследствие огромной силы притяжения планет-гигантов. Бесспорно, однако, что сложная жизнь в Солнечной системе существует только на Земле.
Благодаря развитию технологии мы теперь можем искать жизнь и за пределами Солнечной системы. Вероятность обнаружить ее где-либо во Вселенной растет пропорционально числу открываемых экзопланет (на начало 2016 г. их было около 2000). Мы имеем лишь самые базовые знания о большинстве открытых экзопланет, такие как масса и примерный размер. Но совсем недавно мы научились определять химический состав их атмосферы и температурные условия. Изучать атмосферу экзопланет позволили два метода — транзитная и затменная спектроскопия и спектроскопия методом прямого наблюдения. Транзитный и затменный методы позволяют отделить измеряемые параметры планеты от параметров звезды, вокруг которой она вращается, благодаря изменению положения планеты относительно звезды, а именно когда она проходит перед диском звезды или скрывается за ним. Спектроскопия методом прямого наблюдения — многообещающая новинка, о которой рассказала в предыдущей главе Сара Сигер.
При помощи телескопов «Хаббл» и «Спитцер», а также наземных обсерваторий мы приступили к анализу ключевых химических компонентов и температурных характеристик самых перспективных транзитных экзопланет. Среди них преобладают горячие газовые планеты на очень близких к звезде орбитах. Совсем недавно нам удалось настолько усовершенствовать инструменты и методы анализа данных, что стало возможно определить основные черты атмосферы экзопланет типа «суперземля» — каменистых планет с массой до десяти масс Земли. Однако исследованные на данный момент «суперземли» все-таки слишком горячие, чтобы рассчитывать на их обитаемость.
Новые методы прямого наблюдения начали приносить первые сведения об атмосфере молодых газовых планет, расположенных в значительном удалении от материнской звезды. Самыми значительными текущими проектами на основе этих методов являются Gemini Planet Imager для телескопа Gemini в Чили и SPHERE — инструмент телескопа VLT в пустыне Атакама, также в Чили. Другие ценные инструменты прямого наблюдения экзопланет созданы для телескопов в Калифорнии и на Гавайях.
Итак, как узнать, что планета пригодна для жизни, а возможно, и обитаема? Очевидно, самым важным для понимания происхождения и эволюции планет является знание об их химическом составе и состоянии атмосферы, и без этих данных невозможно выдвигать какие-либо предположения о наличии на них жизни. Последние 50 лет ученые ломали головы над этой проблемой, и в ближайшие десятилетия нам, по всей видимости, удастся получить некоторые ответы, хотя многие препятствия до сих пор не преодолены. Законы физики универсальны — одинаковы в Лондоне, на Луне и на Проксиме Центавра, а Вселенная, по большому счету, однородна, однако у нас до сих пор нет научного определения жизни, применимого и за рамками наших знаний о жизни на Земле. На Земле кислород и озон являются газами биологического происхождения. Следует ли из этого, что нужно искать эти две молекулы на других планетах как доказательство их обитаемости? То есть являются ли эти газы универсальными биомаркерами или присутствуют лишь на Земле?
Джеймс Лавлок одним из первых попытался ответить на эти вопросы строго с научных позиций. В революционных статьях о внеземной жизни, опубликованных еще в начале 1960-х, он стремился дать универсальное определение жизни, которое являлось бы научным и в то же время практичным. Его интерес к этой теме был вызван ожидающимся запуском зондов НАСА «Викинг-1» и «Викинг-2», которые должны были сесть на Марс и наряду с прочим заняться поиском следов жизни на его поверхности. Лавлок скептически отнесся к всевозможным механизмам, с помощью которых его коллеги собирались искать эти следы, в том числе к маленьким ловушкам для марсианской живности. Лавлок утверждал: чтобы понять, может ли Красная планета быть обитаемой, нужно изучать не ее поверхность, а крайне слабую атмосферу. Состояние атмосферы необитаемой планеты очень близко к химическому равновесию — именно это и обнаружили «Викинги», вследствие чего Лавлок сделал вывод, что на Марсе жизни нет. Как я объясняла в предыдущем разделе, содержание кислорода и озона в нашей атмосфере стало увеличиваться после появления многоклеточных, так что ныне атмосфера Земли содержит бесспорное свидетельство наличия живых существ, которые насыщают ее кислородом. Если бы жизнь на Земле вымерла, кислород и озон также быстро исчезли бы, поскольку вступали в реакции с другими химическими соединениями вплоть до достижения равновесия. Земными биомаркерами являются сезонные колебания концентрации CO2, потому что растения находятся в состоянии вегетации летом и замирают на зимний период, а также так называемый «сигнал красного края». Это остроумное наблюдение заслуживает некоторых пояснений. В ходе фотосинтеза растения поглощают свет преимущественно видимой части спектра, а инфракрасный свет с большой длиной волны просто отражают. Эта «отражательная способность» растительности сразу же выявляется в ходе спутниковых измерений. Построив график зависимости интенсивности света от длины волны, мы увидим резкий спад (красный край) при переходе от более длинных (инфракрасных) волн к более коротким (волнам видимого света).
Метод обнаружения вероятной жизни на планете по составу ее атмосферы применим и к экзопланетам. Данное Лавлоком определение биомаркера — по сути химически неравновесного состояния, вызванного наличием живых организмов, — на данный момент является единственным научно-строгим понятием, которым мы располагаем. Однако оно несовершенно, и возможно, что обитаемые миры при наблюдении ничем не будут выделяться из множества похожих планет. Главное, мы недостаточно представляем химический состав атмосферы экзопланет: находятся ли они по большей части в равновесном состоянии или в неравновесном, но вызванном абиогенными процессами, как это следует из компьютерного моделирования. Все, что нам сейчас доступно, — это изучать и наблюдать огромное число планет нашей Галактики, имеющих разные размеры, температуру и материнские звезды, пытаясь понять, что могут представлять собой миры предполагаемых инопланетян. Без этой информации, следовательно, и без общей картины мы рискуем без должных оснований объявить планету обитаемой исключительно в соответствии с вышеприведенным определением биомаркера.
Одержимость поиском второй Земли
Поначалу поиск планет за пределами Солнечной системы вдохновлялся и направлялся стремлением обнаружить копию Земли — планету в точности такую, как наша. Однако охота за двойником Земли, будь то в нашей Галактике или во всей Вселенной, не только антинаучна, но даже не особенно интересна. Мысль, будто Земля является единственной или самой перспективной моделью обитаемой планеты, рождена невежеством, ограниченностью и антропоморфизмом, считающим нас самих и наш мир центром мироздания, как это было принято до Галилея. В Земле нет ничего особенного. Данные о твердых планетах, известных на сегодняшний день, заставляют нас изменить точку зрения.
Спутник НАСА «Кеплер» был запущен больше 20 лет назад для поиска аналогов Земли рядом с солнцеподобными звездами. Статистический анализ данных «Кеплера» показал, что размер Земли не имеет решающего значения, что это скорее случайность в многообразии размеров твердых планет. Я имею в виду, что планеты в два раза больше или вполовину меньше Земли в принципе тоже могут быть обитаемыми. Что же касается Солнца, то теперь мы знаем, что это весьма средняя звезда, не слишком большая и не слишком маленькая, находящаяся на середине своего жизненного цикла. Могла ли возникнуть жизнь на планете возле звезды меньше и холоднее или больше и горячее Солнца? Почему бы и нет? Даже отбросив крайности — слишком массивные и нестабильные или слишком активные звезды, — мы все равно получим множество возможных вариантов.
Что еще можно измерить в ходе поиска обитаемых миров? Например, температуру. Если мы считаем, что жизнь обязательно имеет углеродную основу и химические связи, аналогичные тем, что сформировались у земной жизни, то температура на планете не должна слишком отличаться от земной. Это, казалось бы, противоречит моему призыву расширить пределы допустимого, но жизнь на Земле действительно имеет в своей основе самые распространенные элементы во Вселенной: водород, углерод, азот, кислород. Кроме того, в областях формирования звезд или планет, а также комет были обнаружены многочисленные сложные органические молекулы, в том числе аминокислоты, строительные блоки белков и предшественники нуклеотидов, компонентов ДНК и РНК — нашего генетического материала. Мы, безусловно, «сделаны» не из уникальных или редких компонентов. Именно потому, что составляющие жизни, какой мы ее знаем, повсеместно распространены во Вселенной, представляется логичным взять углеродную основу жизни за рабочую гипотезу. В таком случае температура на обитаемой планете не может быть какой угодно. Слишком высокая непоправимо разрушила бы структуру органических молекул, а слишком низкая замедляла реакции настолько, что жизни в принципе было бы трудно зародиться.
Земная жизнь также крайне зависима от воды как химического растворителя. Давно ведутся споры о том, могут ли выполнять химические функции воды другие растворители, например аммиак, но все эти построения пока остаются гипотетическими. Если мы хотим придерживаться строгого научного подхода, то не можем исключить жидкую воду из списка необходимых для жизни ингредиентов. В конце концов, мы знаем, что это принципиальное требование большинства сложных органических молекул. Следовательно, условие наличия воды в жидком состоянии ограничивает интервал температур и давлений на пригодных для обитания планетах.
Теперь, выйдя в поисках жизни за пределы Солнечной системы, мы переключили внимание на столь отдаленные миры, что анализ атмосферы, возможно, является единственным доступным нам способом установить, обитаемы ли они. Что именно является биомаркером и как объяснить неравновесное состояние атмосферы — основополагающие вопросы в этом поиске. И хотя этого нельзя гарантировать, однажды мы можем наткнуться на планету, атмосфера которой со временем меняется и имеет высокое содержание водяного пара и кислорода…
На момент написания этой книги каталог пригодных для обитания экзопланет () содержит около 33 кандидатов — твердых планет с температурным интервалом, необходимым для присутствия воды в жидком состоянии.