Дэвид Берковичи
Происхождение всего: От Большого взрыва до человеческой цивилизации
«Происхождение всего: От Большого взрыва до человеческой цивилизации / Дэвид Берковичи»: Альпина нон-фикшн; Москва; 2017
ISBN 978-5-9614-4938-9
Переводчик Михаил Безруков
Научный редактор Владимир Сурдин
Редактор Владимир Потапов
Руководитель проекта Д. Петушкова
Корректоры С. Чупахина, М. Миловидова
Компьютерная верстка А. Фоминов
Дизайнер обложки Ю. Буга
Иллюстрация на обложке istockphoto.com
Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория» (при финансовой поддержке Н.В. Каторжнова).
Фонд поддержки научных, образовательных и культурных инициатив «Траектория» (www.traektoriafdn.ru) создан в 2015 году. Программы фонда направлены на стимулирование интереса к науке и научным исследованиям, реализацию образовательных программ, повышение интеллектуального уровня и творческого потенциала молодежи, повышение конкурентоспособности отечественных науки и образования, популяризацию науки и культуры, продвижение идей сохранения культурного наследия. Фонд организует образовательные и научно-популярные мероприятия по всей России, способствует созданию успешных практик взаимодействия внутри образовательного и научного сообщества.
В рамках издательского проекта Фонд «Траектория» поддерживает издание лучших образцов российской и зарубежной научно-популярной литературы.
© 2016 by David Bercovici
Originally published by Yale University Press
© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2017
Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).
* * *
Предисловие
Историю Вселенной, пожалуй, лучше всего писать вспять. Разумеется, не набирая текст от конца к началу, а выстраивая рассказ в обратном хронологическом порядке. Притягательность момента творения и для религиозного, и для научного мышления объясняется нашим интересом к тому, как мы оказались там, где находимся сейчас. Если начать с настоящего момента и отмотать пленку назад на 7000 лет человеческой истории, то мы увидим, что далее перед нами простираются еще 7 млн лет до самой зари человечества. Как бы ошеломительно это ни звучало, но нас ждут еще 600 млн лет до появления животных, 3 млрд лет до момента зарождения жизни, ну и еще какой-нибудь жалкий миллиард до рождения нашей планеты и Солнечной системы. А уж из той точки открываются еще 9 млрд лет до момента возникновения самого времени. Если бы мы могли прокрутить историю Вселенной назад за сутки, как невыносимо длинный авангардистский фильм, то история человечества заняла бы в нем примерно 0,04 секунды и закончилась задолго до того, как с экрана исчезнут вступительные титры. Первые животные появились бы спустя час с начала просмотра; еще семь с лишним часов нам пришлось бы ждать сцен формирования Земли и Солнечной системы и затем промучиться еще 16 часов, чтобы наконец добраться до возникновения Вселенной.
Но как бы ни соблазнительно было вести рассказ об истории Вселенной «из настоящего в прошлое», хронологический подход оказывается значительно более продуктивным, тем более что мы привыкли мыслить и жить в мире, где все «устремлено вперед». В этой небольшой книге я изложу историю в ускоренном темпе не за 24 часа (хотя все зависит от тебя, дорогой читатель), а скользя по поверхности событий и останавливаясь лишь на важнейших из них. Книга охватывает самые знаменательные моменты в истории Вселенной, показывая, когда и, самое главное, как появились различные ее части. Понятие «происхождение» глубоко укоренилось в науке. Речь идет не о мифах и домыслах, а о важнейших научных гипотезах, объясняющих, как возникло все сущее. Разница между домыслом и гипотезой принципиальная. Исследователи могут опровергнуть или признать ложной гипотезу в ходе экспериментов или наблюдений, поскольку гипотеза – это предсказание, поддающееся проверке и измерению. Проверяемая гипотеза, пожалуй, стала основополагающим научным понятием, и, хотя кому-то такого рода материи могут показаться сухими, я надеюсь донести до читателя всю красоту этого понятия, рассматривая истории происхождения. Но не волнуйтесь, слишком усердствовать с красотой я не собираюсь.
Хочу заметить, что эта книга выросла из моего студенческого семинара в Йельском университете, скромно названного «Происхождение всего». Его целью было объяснить, что такое наука с помощью «больших» проверяемых гипотез. Книга предназначена широкой аудитории, но я не думаю, что разговор о науке следует вести на примитивном уровне. В то же время я постараюсь не утомлять читателя терминологией и пояснять, что к чему, там, где без толики научного жаргона не обойтись.
И хотя я буду излагать лишь основные моменты теорий происхождения, это не случайные или не связанные между собой эпизоды – каждый из них зависит от предыдущего и плавно перетекает в последующий. Те кирпичики, из которых построена жизнь, возникли из воздуха, моря и горных пород нашей планеты, а сама Земля сформировалась из космической пыли. Ее частицы родились в горниле гигантских звезд, которые возникли из газа, появившегося в результате Большого взрыва. Расположение нашей планеты в космическом пространстве, то, каким образом возникали и изменялись ее океаны, атмосфера и внутреннее строение, – все это позволило сложным формам жизни существовать на протяжении сотен миллионов лет.
Как ученый, который занимался рядом обсуждаемых здесь тем (хотя, конечно, не всеми), я часто рассматриваю вопросы происхождения сквозь призму геофизики, т. е., говоря откровенно, смотрю на вещи несколько предвзято. Со временем мои студенты уясняют, что в моем изложении важная роль отводится тектонике плит, и, если бы я мог каким-то образом возложить на нее ответственность за Большой взрыв, я бы это сделал (но, к сожалению, тут имеет место досадное несовпадение во времени). Есть прекрасные, гораздо более подробные, чем эта, книги по истории Вселенной и жизни на Земле, в конце я привожу их перечень. Моя же работа, не претендуя ни на глубину, ни на всеохватность, будет весьма немногословной и несколько поверхностной в лучшем смысле этих слов – если, конечно, такой смысл у них имеется. Моя цель – предложить краткий и, надеюсь, легко читаемый обзор, который призван дать представление об истории Вселенной (и в какой-то степени о месте человечества в этой истории), и, что еще важнее, побудить читателя расширять свои знания в этих интереснейших областях.
Предупреждение: читатель может предположить, что я являюсь специалистом во всех тех сферах, о которых говорится в этой небольшой книге. Что было бы замечательно, будь оно правдой, но, если честно, это не так. Определенный багаж знаний за почти три десятилетия преподавательской деятельности в университете я накопил, но я ни в коей мере не астроном, не биолог и не антрополог. Поэтому темы, близкие к моим научным интересам – геофизике и науке о Земле, – поневоле будут рассмотрены более подробно. Читатель не должен полагаться на эту книгу как на окончательное слово в затрагиваемых ей вопросах. Она больше похожа на пробную тарелку кушаний из ресторана кухни фьюжн, шеф-повар которого главным образом знаменит своими лингвини.
1. Вселенная и галактики
Время началось после непостижимого, чудовищной силы взрыва – неплохое начало, не так ли? Однако был ли этот взрыв первым моментом существования Вселенной или только Земли, еще сравнительно недавно – до XX в. – не знали. Первые строки Библии гласят: «В начале сотворил Бог небо и землю». В XVII в. ирландский архиепископ Джеймс Ашшер даже вычислил точную дату этого события – 23 октября 4004 г. до н. э.
Некоторые выдающиеся философы эпохи Возрождения, жившие незадолго до Ашшера, придерживались радикального мнения, что у времени вообще не было начала. В том числе знаменитый, в основном из-за своей мученической смерти, итальянский монах-доминиканец и мыслитель XVI в. Джордано Бруно. Он верил в альтернативную по тем временам идею Коперника о том, что Земля не является центром мира, а обращается вокруг Солнца. Бруно пошел дальше Коперника и предположил, что Солнце – всего лишь звезда, такая же, как и те, что мы видим на ночном небе, и вокруг которых также обращаются планеты. Но самое важное, по крайней мере, для нашей книги, – это утверждение Джордано Бруно о том, что Вселенная неизменна и безгранична во времени и пространстве. Бруно был не первым европейским мыслителем, высказывавшим такие взгляды, однако именно его идеи католическая церковь объявила еретическими наряду с еще более оскорбляющим веру отрицанием Божественности Христа и таинства Пресуществления. Бруно был схвачен в Венеции и предстал перед трибуналом, затем его увезли в Рим, где вновь подвергли допросам. Пылкий и язвительный Бруно заявил, что не отречется от своих трудов, пока папа римский или сам Господь Бог не скажут ему, что он не прав. Те промолчали, и в первый день великого поста 1600 г. Джордано Бруно был сожжен на костре на площади Кампо ди Фьори в Риме. Сейчас на этом месте стоит его статуя, грозно поглядывающая на веселых туристов, которые обедают в ближайших кафе.
К счастью, с тех пор ученых больше не сжигают на кострах за их идеи (по крайней мере буквально). Однажды в Риме мы с коллегой, стоя перед впечатляющим памятником Джордано Бруно, задались вопросом, отреклись бы мы от своих научных работ под страхом смерти, как это сделал Галилео Галилей через 33 года после казни Бруно. После короткого раздумья мы рассмеялись и признали, что тут же отреклись бы. Но независимо от нашей трусости – и от самой идеи умереть за труды, которые никто не читал, – у нас есть возможность оценить прошлое, поэтому мы понимаем, что лженаука умирает вместе с ее авторами, а настоящая наука не умирает никогда. Если наши воззрения погибают вместе с нами, то, вероятно, этого они и заслуживают. Однако Джордано Бруно пожертвовал жизнью ради своих убеждений, став одним из самых известных мучеников науки. В конце концов его идеи оказались пророческими, особенно теория о том, что Земля – всего лишь одна из великого множества планет, обращающихся вокруг одной из многочисленных звезд в безграничной и древней Вселенной.
Однако идея Бруно о том, что Вселенная безгранична не только в пространстве, но и во времени, не верна – у времени было начало. Простейшее доказательство этого – темнота ночного неба. Если бы мы жили в безгранично древней и безгранично обширной Вселенной, каждый клочок ночного неба был бы занят звездами, свет этого беспредельного количества звезд успел бы достичь нашей планеты и все ночное небо было бы освещено этим светом. Еще современники Джордано Бруно немецкий математик Иоганн Кеплер и английский астроном Томас Диггес упоминали этот фотометрический парадокс, однако назван он был в честь немецкого астронома конца XVIII–XIX вв. Генриха Вильгельма Ольберса. Решение парадокса предложил Уильям Томпсон (лорд Кельвин), английский физик XIX–XX вв., а до него верную догадку высказал американский писатель и поэт Эдгар Аллан По: Вселенная должна быть ограничена либо во времени существования (и, таким образом, свет самых далеких звезд до нас еще не долетел), либо в размерах (потому звезды не занимают собой каждый клочок неба), либо в том и другом. Эта важная догадка впоследствии привела к гипотезе Большого взрыва, поскольку из нее следовало, что Вселенная появилась в некий момент прошлого и/или не везде одновременно.
В 1920-х гг. американский астроном Эдвин Хаббл на основании наблюдений в телескоп установил, что за пределами Млечного Пути, который прежде считали единственной галактикой в неподвижной и конечной Вселенной, имеются другие галактики. Расстояние до них Хаббл вычислил по цефеидам – пульсирующим переменным звездам, чей период (время между пульсациями) и светимость (полная излучаемая энергия в виде света) пропорциональны. Благодаря этому можно определять расстояния: у цефеид с одинаковым периодом пульсации светимость одинаковая, если же одна из этих звезд кажется более тусклой, значит, она находится дальше от нас, и наоборот. (Видимая яркость объекта убывает обратно пропорционально квадрату расстояния до него.) Таким образом, наблюдая цефеиды, можно вычислить расстояние до галактик, в которых они расположены. Хаббл также обнаружил, что чем дальше отстоят галактики, тем больше их красное смещение. Красный свет имеет наибольшие периоды колебаний и длину волны в видимой части спектра. Красное смещение света можно сравнить с понижением звука сирены проезжающей мимо нас машины скорой помощи (звук понижается вследствие снижения частоты звуковых волн или увеличения их длины и периода колебаний). Красное смещение галактик показывает: чем больше расстояние между двумя галактиками, тем выше скорость их взаимного удаления, т. е. галактики удаляются друг от друга, разлетаясь в разные стороны.
До того как Эдвин Хаббл обнаружил, что галактики удаляются друг от друга, бельгийский астроном Жорж Леметр и русский физик Александр Фридман независимо друг от друга пришли к выводу, что Вселенная расширяется. Оба ученых использовали общую теорию относительности Эйнштейна, хотя сам Эйнштейн вначале отвергал их расчеты (правда, принял их позднее). Наблюдения Хаббла подтвердили идеи Леметра и Фридмана о расширяющейся Вселенной.
Если Вселенная конечна во времени и пространстве и при этом она расширяется, то, «отмотав назад» ее расширение, мы увидим, что вся ее масса и энергия некогда была сосредоточена в невероятно малой и горячей точке, которую Леметр назвал «космическим яйцом». Начальное расширение этой массы в первые моменты возникновения Вселенной астроном из Кембриджского университета Фред Хойл в насмешку (потому что ему очень не нравилась эта идея) назвал Большим взрывом. Название прижилось, хотя, вопреки фразе, которой я начал главу, слово «взрыв» не совсем подходит для описания этого явления. Взрыв представляет собой ударную волну, вызванную резким разделением газа с высоким давлением и газа с низким давлением, в то время как Вселенная со всей своей массой и энергией была сжата в одной крошечной точке, т. е. Вселенной некуда было распространяться. Расширяясь, Вселенная несет с собой границу нашего мира, за пределами которого нет ни света, ни энергии, ни пространства, ни времени. Представить это весьма трудно, не правда ли?
Наконец, в 1960-е гг. американцы Арно Пензиас и Роберт Уилсон открыли космическое микроволновое фоновое излучение, или реликтовое излучение, – радиационный шум, равномерно заполняющий Вселенную. Это показало, что космическое пространство не является абсолютно мертвым и холодным, с нулевыми показателями температуры и энергии, оно наполнено реликтовым излучением, которое «разогревает» температуру космоса до −270 °C. Это остаточное тепло является доказательством более горячего состояния Вселенной после Большого взрыва.
Теория Большого взрыва, как и позднейшие наблюдения расширяющейся Вселенной, позволяют вычислить возраст Вселенной. Если мы подсчитаем время, необходимое, чтобы Вселенная выросла с определенной скоростью расширения (названной постоянной Хаббла) из точки до своего сегодняшнего размера, а также учтем ее температуру, то можно предположить, что возраст Вселенной равен примерно 14 млрд лет (плюс/минус 1 млрд). Этот вывод подтверждается астрономическими наблюдениями старейших объектов Вселенной: главным образом это маленькие звезды с низкой скоростью горения (мы еще вернемся к ним в следующей главе). Однако они не могли возникнуть раньше чем через 500 млн лет после Большого взрыва, поэтому по ним нельзя точно определить возраст Вселенной. Сейчас он приблизительно оценивается в 13,8 млрд лет.
Теория Большого взрыва – нечто большее, чем просто описание разрастания Вселенной из крохотной точки до сегодняшнего громадного размера. Череда событий, изменивших ее начальное состояние, определила строение материи и структуру Вселенной. И все это произошло в интервале между первыми ничтожными долями миллисекунды до одной минуты после Большого взрыва. Не углубляясь в дебри, мы можем допустить, что на начальной стадии Вселенная была невероятно плотной и горячей и представляла собой крошечный шарик чистой колоссальной энергии. По мере его расширения и охлаждения появлялись различные состояния вещества, энергии и даже силы природы. Этот процесс отдаленно напоминает остывание пара и превращение его в воду, а затем в лед. Каждый этап ведет к изменению состояния вещества (газообразное, жидкое или твердое) – это называется фазовым переходом. Но в первые моменты Вселенной переходы были куда более странными, а о начальном этапе, из которого они вышли, мы пока ничего не знаем.
Предполагается, что в самый первый момент Большого взрыва температура и давление были столь высоки, что Вселенная, какой бы она ни была, содержала только одну форму энергии, сжатой в невообразимо малую точку, значительно меньшую, чем атом и даже субатомные частицы. В этом состоянии Вселенная пребывала 10–43 секунд (для справки: например, 10–2 – это то же самое, что и 0,01, таким образом, 10–43 равняется единице, отделенной от десятичного знака 42 нулями). Этот отрезок времени называется Планковской эпохой – в честь Макса Планка, немецкого физика XX в., который известен как основоположник квантовой механики. В течение этой эпохи (не могу не заметить, что космологи весьма странно используют такие понятия, как «эпоха» и «эра», что может довести до сумасшествия большинство геологов) все фундаментальные взаимодействия были представлены одной силой. Силы вызывают обмен частицами; например, магниты прицепляются к вашему холодильнику благодаря обмену фотонами – одновременно являющимися так называемыми «частицами-переносчиками» и частицами света. У других сил имеются свои частицы-переносчики. Если в Планковскую эпоху все эти частицы были одинаковы, значит, одинаковы были и сами силы. Концепция начальной объединенной силы, которую давно ищут физики-теоретики, иначе называется единой теорией поля, или теорией всего. Однако теория, которая объединила бы гравитацию, удерживающую нас на планете, с тремя другими фундаментальными взаимодействиями – электромагнитным (контролирующим взаимодействие между электрическими зарядами и силы магнитного поля), сильным и слабым (контролирующими связь и притяжение субатомных частиц внутри атомного ядра) – пока не сформулирована. Возможно, решить эту сложную задачу помогут такие разделы физики, как теория струн или петлевая квантовая гравитация. Объединение трех фундаментальных взаимодействий, кроме гравитации, лежит в основе теорий Великого объединения и того, что мы называем Стандартной моделью «почти для всего». Обнаружение частицы (бозона) Хиггса, названного в честь британского физика Питера Хиггса, стало огромным шагом вперед в рамках Стандартной модели. Это открытие объясняет, чем обусловлено наличие массы у материи (конкретно «инертной массы», она делает одни объекты при перемещении более тяжелыми, чем другие, и зависит это от степени их взаимодействия с повсеместно распространенным полем Хиггса).
Но я отвлекся от сути. На самом деле мы все еще не знаем, что представляла собой Вселенная в Планковскую эпоху и что было до нее. Так или иначе в конце Планковской эпохи сильно связанная крошечная Вселенная стала нестабильной и произошел Большой взрыв.
Следующие 10–35 секунд Вселенной можно уже и вправду назвать взрывом Большого взрыва, вызвавшим невероятно быстрое расширение. Этот неуловимо короткий период времени называют Космической инфляцией. Она расширила объем Вселенной на много (как полагают, на 1070) порядков, и хотя сам объем был сравнительно мал (возможно, несколько кубических метров), расширение происходило со скоростью, во много раз превышающей скорость света. Предполагают, что оно началось благодаря высвобождению некой формы энергии, заключенной в едином силовом поле. Она стала источником материи и энергии образовавшейся Вселенной.
Идея быстрого расширения Вселенной стала неотъемлемой частью теории Большого взрыва, без нее трудно объяснить наличие в космосе повсеместно распространенного электромагнитного излучения, называемого реликтовым. Если за прошедшие 14 млрд лет пустое космическое пространство Вселенной стало примерно одинаковой температуры, значит, разные ее части сообщались друг с другом до того момента, пока Вселенная не достигла столь больших размеров, чтобы сохранить одну и ту же температуру в будущем. Если же части Вселенной с начала времен не сообщались друг с другом, тогда трудно понять, почему сейчас они одной и той же температуры. Космическая инфляция позволила Вселенной распространиться в маленьком конечном объеме, в котором все находилось в контакте и было одной температуры, прежде чем разлетелось в разные стороны.
После расширения плотность высвобожденной распространившейся энергии стала меньше, но этого было достаточно для образования материи. Энергия может превращаться в материю согласно известному уравнению Эйнштейна: E = mc ², где E – энергия, m – превращенная масса, а c – скорость света. Первоначальная материя представляла собой «суп» из субатомных частиц, так называемых кварков – строительного материала для протонов и нейтронов, которые, в свою очередь, составляют ядро атома. Однако после расширения осталось еще много чистой энергии в форме фотонов и группы легких частиц – лептонов (электронов – отрицательно заряженных частиц, обращающихся вокруг атомного ядра и отвечающих за протекание электрического тока в проводниках, и нейтрино – обладающих практически нулевой массой частиц, которые прямо сейчас пролетают сквозь ваше тело совершенно незамеченными). Лептоны рассматриваются отдельно от более тяжелых частиц, так как они не могут собраться вместе и составить атомное ядро.
Температура была все еще слишком высокой, чтобы кварки могли соединиться, но следующие 10–5 секунд жизни Вселенной стали богатыми на события. Приблизительно в равных количествах в ней существовали вещество и то, что мы называем антивеществом (например, античастица электрона – позитрон, который обладает такой же массой, но имеет противоположный электрический заряд). После короткого сосуществования вещество и антивещество аннигилировали друг друга. При этом высвобождалось огромное количество энергии и оставалось немного материи. Ее было «чуть» больше – именно поэтому материя сейчас преобладает. Похоже, тогда же возникла и темная материя, которая, как полагают, составляет большую часть массы Вселенной (мы поговорим об этом позже). В последние моменты этого отрезка времени происходило группирование кварков, достаточно охладившихся для объединения в протоны и нейтроны. Но все же было еще слишком горячо, чтобы нейтроны и протоны смогли образовать атомные ядра, не говоря уже о целых атомах. Протоны и нейтроны называют адронами, поэтому последняя часть этих 10–5 секунд зовется эпохой адронов.
По прошествии этих 10–5 секунд температура оставалась довольно высокой, и у фотонов было достаточно много энергии, чтобы преобразовывать ее в материю и создавать лептоны. Но через секунду Вселенная охладилась, появление лептонов прекратилось, а созданные тогда лептоны сохранились до наших дней (кроме лептонов, созданных в ядерных реакциях). То, что происходило между 10–5 до 1 секунды после Большого взрыва, называют эпохой лептонов.
В промежутке примерно от 1 секунды до 100 секунд Вселенная достаточно охладилась, чтобы нейтроны и протоны смогли объединяться, образуя первые атомные ядра. Но свободный нейтрон по своей природе нестабилен и может распадаться на электрон и протон. Таким образом, по истечении этих 100 секунд нейтронов осталось не так много: из каждых 16 адронов лишь два были нейтронами, а остальные 14 – протонами. В этой порции из 16 адронов два нейтрона могли соединиться с двумя протонами и образовать ядро гелия. Оставшиеся 12 протонов образовали ядра водорода. Таким образом, гелий составлял четверть массы Вселенной (так как четыре из каждых 16 адронов стали гелием), а оставшиеся три четверти приходились на водород (его образовали 12 из каждых 16 адронов). Образовались и другие элементы, такие как литий и более тяжелые разновидности (изотопы) водорода (например, дейтерий, ядро которого содержит и нейтрон, и протон), но в очень малых количествах, потому что Вселенная охладилась слишком быстро, чтобы могло сформироваться большее количество этих веществ. То, что массовая доля элементов во Вселенной осталась неизменной с тех самых пор, а именно примерно 75 % водорода, 25 % гелия и крайне небольшое количество более тяжелых элементов (подробнее об этом ниже), является еще одним, причем успешно проверенным, аргументом в пользу теории Большого взрыва.
На протяжении последующих 100 000 лет Вселенная была еще слишком горячей, чтобы атомные ядра могли захватить электроны и образовать целый атом. Плотность материи и энергии фотонов была достаточно высокой, чтобы они «застряли» друг в друге. Это означает, что материя была слишком плотной и потому непрозрачной, а энергии было слишком много, чтобы позволить материи собраться в нечто большее, чем существующие отдельно друг от друга атомные ядра и электроны. Это время обычно называют радиационной эрой или стадией радиационного доминирования, так как Вселенная была пронизана фотонами. Примерно через 100 000 лет после Большого взрыва масса и плотность фотонов уменьшилась настолько, что свет смог отделиться от материи. А когда после Большого взрыва прошло около 380 000 лет, Вселенная достаточно охладилась, чтобы ядра смогли соединиться с электронами и образовать атомы. С этого момента начинается эра доминирования вещества, в которой мы в общем-то и живем. Благодаря этому последнему соединению высвободилось большое количество энергии, остатки которой наблюдаются сейчас в виде реликтового излучения. Это окончательное соединение атомов и высвобождение энергии может содержать следы слегка небольшой комковатости кварковой плазмы после эпохи быстрого расширения. Таким образом, малые флуктуации яркости космического реликтового излучения – это сильно расширившиеся следы ранних флуктуаций плотности вещества.
По окончании стадии радиационного доминирования и высвобождения энергии от соединившихся атомов свет отделился от вещества, и Вселенная на 300 млн лет погрузилась во тьму. Этот период называется Темными веками. Коротко говоря, Вселенная остыла, и материя рассеялась настолько, что в тот период не было источников света.
В конце Темных веков слабые флуктуации в плотности водорода и гелия вызвали повышенное гравитационное притяжение к более плотным участкам, которые притягивали все больше вещества. Дополнительное количество вещества вызвало «сгущение» этих флуктуаций, увеличение массы и т. д., что впоследствии привело к появлению гравитационно-связанных структур в форме огромных межзвездных облаков. В этих газовых облаках начали формироваться первые звезды.
По-видимому, первые звезды состояли только из водорода и гелия, а их формирование обозначило окончание Темных веков – 300 млн лет после Большого взрыва. После того как самые массивные из первых звезд закончили свою эволюцию и взорвались, создав более тяжелые химические элементы (подробно об этом в следующей главе), более маленькие звезды начали формироваться в этих огромных межзвездных облаках, становясь гравитационно-связанными системами – первыми галактиками, пик появления которых пришелся на период между 1–3 млрд лет после Большого взрыва. Хотя галактики во Вселенной разлетаются, они не находятся в состоянии полностью свободного плавания, их группы гравитационно связаны друг с другом, образуя скопления галактик. Сами эти скопления связаны друг с другом вдоль галактических нитей, пронизывающих нашу Вселенную. Сети этих нитей являются крупнейшими структурами во Вселенной, а в промежутках между ними находятся пустые пространства космоса (войды).
Наша Галактика, Млечный Путь, связана с галактикой Андромеды (в отдаленном будущем они могут даже столкнуться). Обе они являются крупными галактиками в скоплении Девы, которое может быть частью еще большего скопления под названием Ланиакея. Тем не менее, после того как через миллиард лет после Большого взрыва возникли первые галактики, потребовалось еще 1–2 млрд лет, чтобы сформировались скопления галактик и галактические нити.
Галактики сегодня не одинаковы по форме и размеру, но в то же время они не образуют совершенно случайные фигуры. Самые большие из них – эллиптические галактики, которые представляют собой сферические шары из звезд, обращающиеся вокруг центра по хаотически ориентированным орбитам. Распространенными видами галактик являются дисковые, спиральные, а также спиральные галактики с перемычкой – плоские и обращающиеся вокруг массивного тела, находящегося в их центре, например Млечный Путь или Андромеда. Гигантское облако из газа и звезд, сформировавших спиральную галактику, уплотнялось под действием своей гравитации, но центробежная сила препятствовала сжатию перпендикулярно оси вращения, позволяя облаку сжиматься параллельно оси, создавая таким образом форму плоского диска (это похоже на формирование Солнечной системы, о чем мы поговорим позднее). В центре сжимающегося облака всегда собирается бóльшая часть массы: в Солнечной системе это Солнце, а в галактиках масса их центра столь велика, что там образуется сверхмассивная черная дыра – объект настолько тяжелый, что даже свет не может преодолеть его притяжение, если подойдет слишком близко.
Обычно диаметр галактик составляет около 100 000 световых лет (1 световой год – это расстояние, которое проходит свет за 1 год, примерно 1013 км или 10 трлн км; для сравнения: Нептун, самая далекая от нас планета, находится на расстоянии 4,5 млрд км от Солнца, что в 2000 раз меньше светового года). Наша галактика содержит в себе сотни миллиардов звезд. Однако, по некоторым данным, можно предположить, что масса звезд составляет лишь крохотную долю общей массы галактики. Галактики содержат огромное количество скрытой массы, которую называют темной материей.
В 1960-х гг. американский астроном Вера Рубин и ее коллеги обнаружили, что в спиральных, дисковых и спиральных с перемычкой галактиках большинство звезд обращаются вокруг галактического центра почти с одинаковой скоростью независимо от расстояния от центра галактики, и это сильно отличается от обращения планет Солнечной системы вокруг Солнца. Орбитальные скорости планет уменьшаются с удалением от светила, ведь единственная сила, удерживающая их на орбите, – это гравитационное притяжение Солнца, которое слабеет по мере увеличения расстояния (это называют Кеплеровым движением – в честь Иоганна Кеплера и его законов движения планет по орбитам). Одинаковая орбитальная скорость звезд означает, что чем дальше они находятся от галактического центра, тем бо́льшая масса должна содержаться внутри их орбиты, чтобы сохранялась гравитационная связь с галактикой. Однако, чтобы звезды продолжали двигаться таким образом, требуется намного бóльшая масса, чем та, которую мы можем наблюдать. Это указывает на присутствие темной материи, которая и составляет остальную часть необходимой массы.
Астрономы также заметили, что относительные скорости галактик внутри скоплений слишком высоки, чтобы оставаться гравитационно связанными друг с другом, если их масса состоит только из наблюдаемой звездной массы. Таким образом, звездные скопления могут быть стабильными и не разлетаться, только если они содержат гораздо больше массы, чем та, которую мы наблюдаем. Есть и другие данные, подтверждающие наличие темной материи, например гравитационное линзирование, из-за которого свет искривляется, проходя мимо таких массивных объектов, как скопления галактик.
Эта невидимая темная материя, удерживающая вместе галактики и скопления галактик, не наблюдается ни в одном из диапазонов электромагнитного спектра – от микроволнового до инфракрасного и ультрафиолетового излучения. Однако в последние годы ученые пришли к выводу, что бóльшая часть материи в космосе – именно темная и первые галактики состояли по большей части из нее, а не из водорода и гелия. Пока остается загадкой, что же она из себя представляет, поскольку мы не можем наблюдать ее непосредственно.
Поскольку Вселенная после Большого взрыва продолжает расширяться, резонно задаться вопросом о ее будущем. Если расширение Вселенной замедляется под действием собственной гравитации, хватит ли начальной взрывной энергии, чтобы продолжать расширяться, или же это расширение «выдохнется» и гравитация заставит Вселенную сжаться обратно в точку? Недавние исследования говорят нам, что ни одна из этих гипотез не верна. Расширение Вселенной не замедляется, а ускоряется. Прежде гравитацию считали единственной силой, действующей на большие расстояния, она должна была бы замедлять скорость расширения Вселенной (и, возможно, привести к ее сжатию) под действием собственной массы. Ускоренное расширение Вселенной стало немалым сюрпризом и свидетельством действия не обнаруженной до сих пор силы. Создающее ее энергетическое поле фактически создает и давление, разгоняющее Вселенную все быстрее. Это поле назвали темной энергией. («Темная энергия» и «темная материя» называются темными не потому, что они как-то похожи друг на друга, а потому, что их нельзя увидеть с помощью света.) Темная энергия – сверхдальнодействующая сила, которая обнаруживается только на уровне сверхскоплений галактик. Вероятно, она не играла особой роли, пока Вселенная не расширилась до достаточно больших размеров. Преобладание темной материи над гравитацией (и наблюдающееся в результате расширение Вселенной), предположительно началось около 4 млрд лет назад, после формирования Солнечной системы. В некотором смысле расширение Вселенной похоже на то, как вода постепенно заполняет таз, пока не доходит до краев и не выливается с другой стороны.
Учитывая объем Вселенной, в котором имеется темная энергия, можно сделать вывод, что она занимает примерно 70 % содержимого (вместе взятых массы и энергии) Вселенной, при этом темная материя составляет 25 % объема, а оставшиеся 5 % – это обычная барионная материя, из которой состоят звезды, планеты и мы с вами. (Хотя бóльшая часть этой материи по-прежнему представлена водородом и гелием.) Темная материя и темная энергия дают о себе знать только в масштабах галактик и их скоплений – совсем не те уровни, которые мы могли бы как-то чувствовать, наблюдать или понять интуитивно. Гравитация, пожалуй, единственная сила, которую мы физически ощущаем и с которой постоянно сталкиваемся – например, когда встаем с кровати, поднимаемся по лестнице или наливаем кофе. А будь мы размером с букашку или микроба, для нас важнее было бы электромагнитное излучение, которое вызывает статическое электричество и поверхностное напряжение воды. Гравитация была бы для нас менее важна и едва заметна. (Муравей легко взбирается вверх по стене и ничуть не пострадает, упав с высотного здания.) В общем, пока мы находимся на крайне низком, микроскопическом уровне понимания природы темной материи и темной энергии.
2. Звезды и элементы
Темные века ранней Вселенной закончилась, когда огромные облака водорода и гелия (и темной материи), сжимаясь под воздействием собственного гравитационного притяжения, начали формировать первые звезды, а затем и галактики. Похожее звездообразование происходит и сейчас, одним из примеров является туманность Орла в нашей Галактике, которая до сих пор «штампует» новые звезды и звездные системы. Как мы уже отмечали, первые такие газовые облака состояли только из диффузной космической материи (если не считать темную материю), в основном в виде водорода и гелия, и потому не содержали ничего, из чего могли бы сформироваться планеты. Формирование первых и последующих за ними звезд обусловило появление более тяжелых элементов, из которых были созданы планеты и все живущее на них.
Когда протосолнечное облако начинает сжиматься под воздействием собственного гравитационного притяжения, молекулы устремляются к его центру с возрастающей скоростью – как шарик, катящийся с горки. Ускоряясь, они сталкиваются и отскакивают друг от друга, и энергия их движения преобразуется в тепло. Это повышает температуру и давление облака и в конце концов останавливает сжатие. (Размеры, формы и эволюцию этих облаков мы обсудим в следующей главе.)
Облако не может долго сжиматься под воздействием собственных гравитационных сил, в какой-то момент коллапс останавливается. Это зависит от размера. Не слишком массивное облако вообще не сжимается, а чем больше его масса, тем больше внутренняя гравитация, такое облако уплотнится еще до того, как внутри него станет слишком горячо.
Некоторые процессы помогают облаку избежать коллапса. Бóльшая часть облака – это водород, молекулы которого состоят из двух связанных между собой атомов водорода. Если центр коллапсирующего облака становится достаточно горячим, чтобы молекулы водорода смогли распасться на атомы, этот распад поглотит энергию и не даст облаку нагреваться, позволяя ему продолжить существование.
Это похоже на фазовый переход, который происходит в кипящей воде (мы использовали такую аналогию при описании Большого взрыва). Тепловая энергия плиты передается воде, и вода закипает. Но превращение воды в пар поглощает энергию, и температура кипящей воды остается неизменной, пока вся вода не выкипит. Таким же образом превращение молекулярного водорода в атомарный поглощает тепловую энергию уплотняющегося облака и сохраняет его температуру стабильной, пока конверсия – в той части облака, которая стала достаточно горячей, – не завершится. То же происходит позже и в центре облака, где среда еще горячее и температура достаточно высока, чтобы атомы водорода испускали электроны и становились ионами. Это происходит по принципу «фазового перехода», выравнивающего температуру.
Поэтому только очень большие молекулярные облака могут коллапсировать сами по себе. Первые звезды, которые полностью состояли из водорода и гелия (их называют звездами населения III, сегодня это «исчезнувший вид»), формировались в облаках, в тысячи и даже миллионы раз более массивных, чем Солнце, и были в сотни раз тяжелее его. Небольшим облакам, чтобы они продолжили сжатие, после того как станут достаточно плотными, необходим триггер, воздействие извне (к примеру, смерть гигантских звезд, которая часто сопровождается вспышками сверхновых). Распространяющиеся при этом ударные волны могут задеть молекулярное облако и запустить его коллапс. С такого стечения обстоятельств началось формирование первых малых звезд, которые живут очень давно и являются одними из основных доказательств возраста Вселенной. Части метеоритной пыли содержат доказательство того, что Солнечная система образовалась именно так. Мы еще вернемся к этому вопросу.
Если все условия выполнены и коллапсирующее облако достигает пика температуры (10 млн градусов по Цельсию), начинается рождение звезды. При такой температуре ядра ионизованного водорода начинают двигаться достаточно быстро, преодолевают электрическое отталкивание друг от друга (на этой стадии ядра представляют собой протоны, они несут положительный заряд и потому взаимно отталкиваются) и соединяются с гелием, ядра которого, как правило, состоят из двух протонов и двух нейтронов. При ядерном синтезе выделяется огромное количество энергии за счет перехода массы в энергию. Мы уже упоминали известное уравнение Эйнштейна E = mc ², где Е – это энергия, m – масса, с – скорость света, равная примерно 300 000 км/с (и достаточная, чтобы за секунду восемь раз облететь вокруг Земли). С учетом огромной величины c ² превращения всего 1 мг (масса крохотной таблетки) в энергию будет достаточно, чтобы испарить 40 000 л воды, а преобразование в энергию 60 мг массы (небольшая упаковка таблеток) полностью превратит в пар воду олимпийского бассейна. Процесс термоядерной реакции был открыт в 1920–1930-е гг. и впоследствии использовался для разработки теории звездного ядерного синтеза (в основном физиком Хансом Бете и астрофизиком Фредом Хойлом, хотя ранее идею нуклеосинтеза высказывал астроном Артур Эддингтон). Эту теорию мы здесь и излагаем.
В коллапсирующем протосолнечном облаке первый переход массы в энергию происходит потому, что масса четырех атомов водорода немного больше, чем масса одного атома гелия, и вся ненужная оставшаяся масса превращается в энергию. Этот колоссальный выброс тепла останавливает дальнейшее сжатие облака и удерживает температуру примерно на уровне 10 млн градусов Цельсия (температура внутри солнечного ядра равна 15 млн градусов Цельсия). Переставшее уплотняться облако по сути уже является звездой, например, Солнце – это плотное облако газа, прекратившее сжатие из-за тепла, высвобожденного в результате термоядерной реакции.
Эта термоядерная реакция может происходить только в самой глубокой и самой горячей части звезды – в ее ядре. Снаружи ядра температура недостаточно высока для термоядерного процесса, но благодаря конвекции – переносу горячих плавучих масс к внешним слоям, из-за чего Солнце выглядит зернистым, – жар от ядра поднимается к поверхности светила и улетучивается вместе с радиацией или фотонами, достигая Земли в виде солнечной энергии (света). Солнце испускает и более тяжелые электроны и протоны, которые разлетаются с солнечным ветром и в конце концов попадают на Землю и другие планеты.
Сжатие звезд размером с Солнце или меньшего размера (красные карлики) останавливается благодаря «средней» температуре, поддерживаемой синтезом атомов водорода. За счет водорода эти малые звезды смогут гореть весьма долго, ведь синтез атомов водорода процесс не быстрый, нельзя просто взять и соединить четыре ядра атомов водорода (или четыре протона), чтобы сразу создать ядро атома гелия. Этот процесс, называемый протон-протонной цепочкой, протекает в несколько этапов. Первые два протона, преодолевая электрическое отталкивание, сливаются, создавая двупротонное ядро – легкий изотоп гелия. (Различные изотопы одного элемента имеют атомные ядра с одинаковым числом протонов, но с разным числом нейтронов, которые в силу своей нейтральности не влияют на химические свойства элемента. Все изотопы гелия имеют два протона, но при этом могут иметь от нуля до восьми дополнительных нейтронов, хотя только изотопы с одним и двумя нейтронами не распадаются.) Это легкое ядро гелия неустойчиво, и срок его жизни недолог. Оно испускает некоторое количество антивещества, позитронов, а также нейтрино, которые становятся частью солнечных нейтрино, превращая один из своих протонов в нейтрон и оставляя изотоп водорода, называемый дейтерием, с одним протоном и одним нейтроном. Затем дейтерий сталкивается и сливается с третьим протоном (ядром атома водорода), создавая еще один стабильный изотоп гелия с двумя протонами и нейтроном. На последнем этапе сталкиваются эти два вида ядер гелия и, испуская два других протона, создают другую форму стабильного гелия с двумя нейтронами и двумя протонами. При этом высвобождается большое количество энергии, и два освобожденных протона начинают сталкиваться с другими протонами, вызывая медленную цепную реакцию. Образовавшиеся ядра гелия с двумя нейтронами и двумя протонами называются альфа-частицами, они часто образуются при распаде тяжелых элементов, таких как уран.
Быть может, мы слишком углубились в тему термоядерных реакций, но она заслуживает нашего внимания по двум причинам. Во-первых, термоядерные реакции являются основным источником энергии, питающим Солнце, а значит, и жизнь на Земле. Они влияют на различные процессы в океанах и атмосфере – на морские течения, погодные условия, даже на особенности климата. Во-вторых, протон-протонная реакция – очень медленный процесс: весь водород Солнца сможет прогореть только за 10 млрд лет, а сейчас наша звезда достигла лишь половины этой отметки; и это хорошо, потому что дает достаточно времени для развития сложных форм жизни – таких, как мы с вами. Но строительный материал для новых планет звезды малого размера, как наше Солнце, не вырабатывают – они создают лишь новые атомы гелия, которые и так есть во Вселенной с момента Большого взрыва. Такие звезды, как Солнце, ничем не примечательны, по крайней мере с точки зрения создания новой материи.
Звезды с большей массой, которая в 15 и более раз превышает массу Солнца, не прекращают уплотняться при ничтожной температуре в 10–15 млн градусов Цельсия. Их гравитационное сжатие остановится только при более высоких температурах, при которых в результате термоядерных реакций могут образоваться более тяжелые элементы. Например, при 100 млн градусов Цельсия в звездах может происходить слияние ядер гелия, в результате чего образуется углерод и затем кислород. В самых больших звездах, красных сверхгигантах, температуры столь высоки, что позволяют образовывать всевозможные элементы вплоть до железа.
Некоторые из важнейших ядерных реакций, при которых образуются тяжелые элементы, происходят путем слияния ядер гелия, так называемых альфа-частиц (каждое из них, как мы упоминали выше, имеет два нейтрона и два протона). Одна такая реакция называется тройной гелиевой – тройным альфа-процессом. Она проходит в два этапа, в результате чего из трех альфа-частиц образуется углерод. Эта реакция довольно сложная и редкая, что ограничивает формирование тяжелых элементов в больших количествах. Но как только появляется углерод, альфа-цепочка продолжается, последовательно добавляя по одной альфа-частице за раз вначале к углероду, производя кислород, потом неон, магний и кремний и так далее до железа, хотя по идее вначале появляются неустойчивые изотопы никеля, распадающиеся благодаря радиоактивности на стабильные изотопы железа. Процессы каждого последующего шага требуют все более высокой температуры и давления. Поэтому они происходят во все более глубоких и горячих слоях гигантской звезды, напоминающих слои луковицы. Чем глубже слой, тем более тяжелые элементы там появляются.
Слоистая структура гигантских звезд напоминает луковицу. Каждый более глубокий и горячий слой – это фабрика, перерабатывающая более легкие элементы из наружных слоев в тяжелые: водород – в гелий, гелий – в углерод и так далее, вплоть до железа. Многие реакции включают слияние с ядрами гелия в альфа-процесс ах, создавая элементы, необходимые для возникновения планет и жизни, – углерод, кислород, магний, кремний и т. д. (C разрешения Барбары Шеберл, Animated Earth LLC.)
Самый верхний слой «звездной луковицы» достаточно горяч, чтобы поддерживать реакцию превращения водорода в гелий и снабжать этими частицами более глубокие слои. Если бы этот слой производил гелий так же медленно, как Солнце, это помешало бы образованию тяжелых элементов во внутренних слоях или, по крайней мере, сильно бы затормозило процесс (при высоких температурах и давлении реакции протекают быстрее и запасы гелия быстро исчерпались бы). Но реакция в звездах-гигантах идет быстрее из-за участия углерода, азота и водорода в так называемом углеродном цикле. Водород быстро превращается в гелий, или альфа-частицы, и перемещается во внутренние слои звезды.
В самом глубоком и горячем слое, у ядра звезды, распадаются неустойчивые изотопы никеля и образуются стабильные изотопы железа. На этом образование элементов путем слияния легких ядер заканчивается. Формирование любого элемента тяжелее железа требует «создать» массу, так как масса этого нового элемента будет больше массы его компонентов. Значит, при его формировании энергия будет поглощаться, а не выделяться. Образование ядер тяжелых элементов ведет к снижению температуры, и термоядерная реакция прекращается.
Некоторые элементы, наиболее распространенные в Солнечной системе (после водорода и гелия, конечно), полностью состоят из альфа-частиц и являются главными строительными кирпичиками планет и жизни: углерод, кислород, кремний, магний, кальций и железо. Возможно, это объясняет, почему жизнь зиждется на углероде. Углерода во Вселенной много, это один из первых устойчивых элементов в цепи производства альфа-частиц. Атом углерода входит в состав многих химических соединений, в частности, соединяется с вездесущим водородом, образуя органические вещества, которые являются основой жизни. Другие важные для жизни элементы, такие как азот и фосфор, появляются в результате других термоядерных реакций, особенно в соединениях с водородом. Таким образом, дорогой читатель, все атомы твоего тела, кроме возникшего вместе с Большим взрывом водорода, появились в недрах гигантских звезд. Трудно в это поверить, но должен же ты был откуда-то произойти.
В знаменитой Периодической системе химических элементов, составленной русским химиком Дмитрием Менделеевым, присутствуют все известные нам элементы. Многие из них значительно тяжелее железа, но по сравнению с другими элементами встречаются они в малых количествах. Дело в процессе, называемом нейтронным захватом. Известны две его разновидности: при происходящем внутри звезд медленном захвате нейтронов ядра атомов железа соединяются с нейтронами, оставшимися после термоядерных реакций. Тяжелые изотопы железа, как правило, нестабильны и обычно испускают электрон, при этом один из нейтронов превращается в протон и создается более тяжелый по сравнению с железом элемент. Эти элементы, в свою очередь, захватывают все больше нейтронов, создавая все более и более тяжелые элементы. Вторая форма, быстрый нейтронный захват, происходит во время коллапса гигантских звезд.
Через 5 млрд лет наше Солнце сожжет весь имеющийся в его ядре водород и умрет. Термоядерные реакции прекратятся, и Солнце вновь начнет сжиматься, продолжая свой начавшийся 5 млрд лет назад коллапс. Однако оно будет все еще очень горячим, и возобновленный коллапс может нагреть его до 100 млн градусов Цельсия. Это позволит превращать гелий в углерод, а затем в кислород, как это происходит в звездах-гигантах. В этот момент Солнце расширится до размеров красного гиганта (не путать с красным сверхгигантом) и поглотит ближайшие объекты Солнечной системы, включая Землю. Из-за ядерного горения гелия, или реакции альфа-процесса, топливо в солнечном ядре быстро прогорит, последует сжатие, но оно уже не нагреет Солнце до температур, при которых вновь начнутся термоядерные реакции создания тяжелых элементов. Наша звезда будет уже, по сути, мертва. Когда остатки водорода и гелия иссякнут, она станет медленно остывающим, светящимся, очень плотным объектом, состоящим из углерода и кислорода, – белым карликом, который будет меньше Солнца примерно в 100 раз.
Гибель гигантских звезд при всей своей катастрофичности для Вселенной событие продуктивное. Исчерпав топливо для термоядерных реакций, гигантская звезда начинает вновь сжиматься. Она так огромна, что коллапс получается внезапным и очень мощным, и столкновение внешнего слоя звезды с более плотным ядром вызывает мощную ударную волну и вспышку сверхновой. Во время вспышки протекает быстрый процесс захвата нейтронов: они присоединяются к атомам, образуя химические элементы тяжелее железа. Вспышки сверхновых выбрасывают в межзвездное пространство продукты термоядерного синтеза, произведенные во всех слоях этих звезд. Они образуют новое поколение молекулярных облаков с более тяжелой пылью, облака сформируют звездные системы, полные материала для образования планет. Вспышки сверхновых могут запускать коллапс протосолнечных облаков. Судя по всему, именно так образовалась Солнечная система. Об этом говорит, например, то, что частички космической пыли в некоторых метеоритах содержат тяжелые изотопы железа, которые могли образоваться только при вспышке сверхновой.
Бóльшая часть массы гигантской звезды выбрасывается в пространство во время вспышки сверхновой, то, что остается, сжимается в чрезвычайно плотную массу. Если она в два-три раза больше массы Солнца, электронное облако, сохраняющее объемы атомов, не может противостоять внутреннему давлению массы, электроны сходят с орбит и «вдавливаются» в ядро, превращая протоны в нейтроны. Радиус атома примерно равен 10–10 м (1 ангстрем, 1Å), а радиус его ядра – 10–15 м – отличие, как между стадионом и муравьем. Поскольку радиус и объем каждого атома сожмутся в 10–5 раз, плотность вещества (т. е. масса, поделенная на объем) возрастет в 1015 раз, т. е. в квадриллион раз! Образовавшееся сверхплотное тело ученые называют нейтронной звездой. Ее плотность столь высока, что, если бы мы наполнили таким веществом обычную пипетку, она весила бы больше, чем все население Земли.
Если оставшаяся масса нейтронной звезды превышает массу Солнца более чем в три раза, нейтроны сожмутся в еще более плотную массу, предположительно состоящую из кварков. Такой объект называют кварковой звездой, ее существование пока не подтверждено наблюдениями.
Наконец, если оставшаяся масса превысит пять солнечных масс, тогда даже кварки не могут сопротивляться дальнейшему сжатию и масса уплотнится до крошечного объема, образовав ядро черной дыры. Ее гравитационное притяжение так велико, что даже свет не может покинуть ее центр. Граница в пространстве-времени, начиная с которой свет не может покинуть объект, называется горизонтом событий. У нас есть доказательства того, что черные дыры действительно существуют, в том числе и сверхмассивные, находящиеся в центрах галактик.
Эта предсмертная агония сверхмассивных звезд играет важную роль в нашей «истории всего», ведь эти звезды производят «строительные блоки» для планет и жизни и распространяют их по галактике благодаря вспышкам сверхновых. Для формирования планет (и лично тебя, дорогой читатель) звезды должны в огромных количествах производить элементы тяжелее водорода и гелия и испускать их, чтобы образовались новые пылевые облака. В одном таком облаке около 5 млрд лет назад сформировалась наша Солнечная система. Необходимо много сверхмассивных звезд, чтобы они создали и распространили в галактике нужные элементы. И это должно происходить часто, чтобы галактику заполнили пылевые облака, из которых впоследствии сформируются планеты.
В нашей Галактике совсем неподалеку от нас обнаружено большое число планетных систем; скорее всего, они формируются часто, и во Вселенной для этого достаточно нужного материала. Если бы сверхмассивные звезды жили столько же, сколько и звезды малой массы, некоторые из них все еще выбрасывали бы в пространство тяжелые элементы. Но из-за высоких температур и давления сверхмассивные звезды – как и самые первые звезды, образовавшиеся через сотни миллионов лет после Большого взрыва, – быстро, по космическим меркам, сгорели. Процесс выгорания водорода, в результате которого образуются элементы тяжелее железа, так скоротечен, что звезды за несколько миллионов лет успевают израсходовать запас горючего и взорваться, образуя новые протопланетные облака. Рождаясь и умирая, сверхмассивные звезды за несколько миллиардов лет производят достаточно пылевых облаков, чтобы формировались планетарные системы – как наша около 5 млрд лет назад. Пик звездообразования, возможно, был достигнут 10 млрд лет назад, так что мы вступили в космическую игру с некоторым опозданием.
3. Солнечная система и планеты
Солнечная система и Земля сформировались около 5 млрд лет назад, когда Вселенной уже исполнилось 9 млрд лет. Вопрос о возрасте Солнечной системы и нашей планеты сопровождался не меньшим количеством открытий и дебатов, чем споры о возрасте Вселенной. Известно, что взгляд ученых на возраст Земли вступает в конфликт с религиозной доктриной, однако одна из самых известных и продолжительных дискуссий произошла не между учеными и богословами, а в научной среде.
В XIX в. уже упоминавшийся в главе 1 британский физик Уильям Томсон, он же лорд Кельвин, подсчитал, что некогда расплавленная Земля, остывая под воздействием холодной среды (космоса, атмосферы, океана и т. п.), должна была достичь современной температуры примерно за 20 млн лет. Из этого Кельвин сделал вывод, что Земля моложе, чем принято было считать в его время. Заодно он пересчитал возраст Солнца. Кельвин был убежден, что Солнце вырабатывает тепло только благодаря коллапсированию, вызванному гравитационным сжатием (о реакции ядерного горения водорода тогда не знали). Учитывая размер Солнца и его светимость, ученый ограничил возраст нашей звезды теми же 20 млн лет. Это намного больше 6000 лет, что высчитал, основываясь на Библии, Джеймс Ашшер, но геологи и эволюционные биологи не верили Кельвину и продолжали считать, что Земля должна быть еще старше.
Ученые-геологи, включая и Чарльза Дарвина, вычислили, что для образования осадочных слоев в горах и каньонах потребовались бы как минимум сотни миллионов лет, особенно учитывая низкую скорость отложения осадочных пород реками и наводнениями. Биологи также полагали, что Земле не меньше нескольких сотен миллионов лет: при черепашьей скорости биологических мутаций биологическое разнообразие и богатая палеонтологическая летопись планеты не могли быть созданы за меньшее время. Но лорд Кельвин с высоты своего научного авторитета не счел эти доказательства убедительными. Споры между физиками и геологами, иногда ожесточенные, продолжались десятилетиями. В конце концов выяснилось, что все были не правы.
Точку в спорах о возрасте Земли поставило открытие ядерного распада радиоактивных элементов. Радиоактивность была открыта в конце XIX в. Анри Беккерелем и Мари и Пьером Кюри. Их исследования, удостоенные Нобелевской премии, показали, что атомы некоторых элементов, например урана, нестабильны и могут, испуская частицы из ядра, спонтанно трансформироваться в другие элементы. А поскольку множество радиоактивных элементов обнаруживается в скальных породах, ученые предположили, что внутренний слой Земли должен быть в высокой степени радиоактивен. Тепла, выделяемого излучаемой энергией частиц во время радиоактивного распада, могло быть достаточно, чтобы поддерживать Землю достаточно горячей (до ее сегодняшней температуры), даже если некогда расплавленная планета остыла миллиарды лет назад. Этот аргумент, впервые высказанный британским физиком Эрнестом Резерфордом, однако, не выдерживает критики, потому что Земля, похоже, имеет намного меньшую концентрацию радиоактивных элементов, чем думали раньше. Более того, если принять кельвиновскую модель статичной Земли, радиоактивность можно было вообще не брать в расчет. Британские ученые Джон Перри и Осмонд Фишер предположили, что теплообмен внутри Земли, при котором горячие массы поднимаются вверх, а холодные опускаются (этот процесс называется конвекцией), делает теорию Кельвина несостоятельной. Потеря тепла Землей могла продолжаться миллиарды лет благодаря подъему на поверхность более горячих масс от центра планеты. Открытие в 1920–1930-х гг. термоядерных реакций привело к осознанию, что Солнце вырабатывает энергию не из-за постоянного гравитационного сжатия, а из-за реакции горения водорода (мы затрагивали эту тему в главе 2), и это горение может длиться миллиарды лет.
Окончательная точка в полемике была поставлена лишь к середине XX в., когда возраст Земли был весьма точно подсчитан благодаря методу радиоизотопного (радиометрического) датирования скальных пород и метеоритов. Он основан на том, что, распадаясь, радиоактивные элементы превращаются из элементов с материнскими ядрами (например, уран) в элементы с дочерними ядрами (например, свинец). Относительное количество материнских и дочерних атомов в отдельно взятом образце может быть использовано для определения его геологического возраста: чем больше дочерних атомов по сравнению с материнскими, тем образец старше. Подсчет соотношения материнских и дочерних атомов, а также определение скорости распада, так называемый период полураспада, помогают вычислять возраст достаточно точно. Согласно этому методу возраст Земли и Солнечной системы был единодушно определен на отметке 4,6 млрд лет, и хотя столь старых скальных пород на Земле не существует, они находятся в метеоритах, большинство из которых являются кусками камней, падавших на нашу планету из пояса астероидов.
Наша Солнечная система сформировалась около 5 млрд лет назад в результате коллапса гигантского газопылевого облака. Он был вызван ударной волной от вспышки сверхновой звезды. Доказательством могут служить крошечные алмазы, вкрапленные в метеориты вместе с тяжелыми изотопами железа, которые могли сформироваться только во время вспышки сверхновой. Обычно размер коллапсирующего пылевого облака, из которого формируется звезда размером с наше Солнце, – 1–3 световых года в диаметре, что многократно превышает размер Солнечной системы. Чтобы образовались звезды большей массы, облако должно достигать десятков световых лет в диаметре. Но и эти гигантские размеры ничто по сравнению с протяженностью Галактики – примерно 100 000 световых лет.
Лишь небольшая часть пылевого облака – облачное ядро – в итоге становится планетарной системой. После коллапса, приведшего к образованию Солнечной системы, бóльшая часть массы ядра облака сместилась в центр, где образовалось Солнце (этот процесс описывался в предыдущей главе). Лишь ничтожно малая часть массы, порядка 0,1 % от массы Солнца, досталась планетам Солнечной системы.
Все основные планеты Солнечной системы обращаются вокруг Солнца в пределах почти плоского диска, который называется эклиптикой. Считается, что Солнечная система приняла дискообразную форму благодаря медленному вращению и постепенному сжатию космического облака, из которого она образовалась. По мере сжатия скорость вращения облака возрастала – так, фигурист, выполняющий «винт», ускоряется, прижимая к груди распростертые руки. Облако вращалось все быстрее и быстрее, но одновременно росла и центробежная сила, «разносящая» материю к краям экватора, перпендикулярно оси вращения. Однако центробежная сила не действует вдоль оси вращения. Поэтому облако продолжало сокращаться вдоль оси, но сохраняло свою форму перпендикулярно ей, постепенно образуя диск. Из остатков вещества, которые сохранились в плоскости диска и продолжали обращаться вокруг Солнца, сформировались планеты Солнечной системы.
Однако, как ни привлекательна гипотеза о пыльном космическом облаке, «сплющенном» в диск благодаря вращению, она приводит к серьезным парадоксам. Если бы такое облако действительно вело себя, как фигурист, выполняющий «винт», то Солнечная система сегодня вращалась бы намного быстрее и под воздействием центробежной силы не сжалась бы до нынешнего, весьма небольшого, размера. Даже если бы изначально облако вращалось очень медленно, сжатие должно было охватить огромные расстояния, и потому наше облако уже нельзя сравнить с обычным фигуристом, который в «винте» подтягивает ничем не занятые руки к корпусу, – скорее это фигурист, у которого на руках повисли стопудовые гири, а сами руки при этом раскинуты на многие километры.
Отдаленные туманности, похожие на облако, из которого родилась Солнечная система, вращаются крайне медленно. Энергия вращения, особенно кинетическая, обычно составляет несколько процентов от общей энергии облака и по природе своей является преимущественно гравитационной – полученной в результате сжатия облака, разогревающей газ и запускающей термоядерные реакции водорода и формирование звезд. Если бы гигантское облако сжалось до размеров Солнечной системы, даже такая небольшая энергия вращения заставила бы Солнце вращаться намного быстрее, чем мы наблюдаем сейчас. Сама Солнечная система вращалась бы гораздо быстрее, чем позволяют нынешние орбиты наших планет. Тем не менее центробежная сила не позволила бы Солнечной системе сжаться до ее нынешнего размера, и Юпитер, расположенный в пять раз дальше от Солнца, чем Земля, оказался бы за пределами орбиты Нептуна, который отстоит от Солнца в 30 раз дальше, чем Земля. Каким-то образом Солнечная система в процессе сжатия потеряла энергию вращательного движения или, что не совсем то же самое, «момент импульса». Это подводит нас к парадоксу момента импульса в физике Солнечной системы, парадокса, который до сих пор не объяснен. Его объясняют разными влияниями – от магнитных полей до турбулентности, «отнимающей» момент импульса Солнца и выталкивающей его из Солнечной системы, но ни одна из догадок не утвердилась в качестве основной. В любом случае Солнечная система смогла (непонятно каким образом) решить проблему с моментом импульса, и протосолнечное облако сжалось в хорошенький диск размером с Солнечную систему, что в итоге позволило Юпитеру двигаться по его текущей орбите. Это первоначальное сжатие было очень быстрым (в геологической шкале времени) – вероятно, около 100 000 лет.
Пора рассказать, что такое момент импульса. Понимание этого явления так или иначе пригодится нам далее. Импульс – это физическая величина, являющаяся мерой механического движения тела и способная передавать это движение другим объектам соответственно его массе и скорости. Импульс равен произведению массы тела на его скорость. Автомобиль, который едет со скоростью 100 км/ч, имеет больший импульс, чем едущий с той же скоростью мотоцикл, и передаст больший импульс силы другому объекту при столкновении с ним. Так же рассчитывается момент импульса вращающегося тела (на месте или вокруг точки по орбите), только масса тела умножается на угловую скорость (обычно в оборотах в минуту) и затем на квадрат действительного размера системы. Под «действительным размером» я подразумеваю расстояние от оси вращения до места, где сосредоточена бóльшая часть массы тела. Колесо велосипеда, бóльшая часть массы которого сосредоточена в ободе, весящее 1 кг и совершающее 100 оборотов в минуту, будет иметь больший момент импульса, чем, например, тонкое веретено весом 1 кг, вращающееся с такой же скоростью. Разницу в движении, которое эти два тела передадут другим объектам, легко визуализировать – просто представьте, как вы останавливаете тот и другой объект рукой.
Поскольку бóльшая часть планетарной массы Солнечной системы досталась Юпитеру, а сам он находится весьма далеко от Солнца, момент импульса Солнечной системы должен быть на орбите Юпитера. Если бы на каком-то этапе момент импульса протосолнечного облака не был утрачен, Солнце вращалось бы намного быстрее, момент импульса Юпитера был бы значительно больше и сама эта планета располагалась бы намного дальше от Солнца, чем сейчас.
Первоначально протосолнечный диск состоял из газа и примесей: водород, некоторое количество гелия, пыль, лед, элементы, созданные в гигантских звездах за несколько миллиардов лет… Все это вращалось вокруг центральной массы облака, которая вскоре должна была стать Солнцем. Это движение создавало эффект центробежной силы, препятствующей дальнейшему сжатию диска внутрь себя. Однако газ обращается вокруг центральной массы облака не так, как планеты обращаются вокруг Солнца.
Движение планеты по околосолнечной орбите – результат баланса между центростремительной силой притяжения Солнца и центробежным выталкиванием наружу в результате обращения планеты вокруг своей оси. Положение планеты на орбите определяется законами Кеплера. Протосолнечный диск ведет себя иначе: к центру он уплотняется, формирующееся Протосолнце разогревает газ, отчего давление здесь выше, чем в более холодных окраинных частях. Из-за этой разницы давлений диск слабее притягивается к Протосолнцу, чем летящая в вакууме планета. Поэтому облако движется по орбите чуть медленнее, чем планета и все небесные тела, движущиеся по Кеплеровым орбитам. Что и говорить, звучит это весьма загадочно, но без этого нельзя понять еще одну загадку формирования нашей Солнечной системы.
Планеты Солнечной системы сформировались из мельчайших частиц в газопылевом диске в то же время, когда бóльшая часть массы диска смещалась к центру облака, чтобы сформировать Солнце. Потребовались бы десятки миллионов лет, чтобы Солнце поглотило всю массу диска, только после этого Солнце бы загорелось и в нем начались термоядерные реакции. А прямо перед началом термоядерных реакций Протосолнце сделало бы невозможным дальнейшее формирование планет (мы вкратце обсудим почему). Таким образом, планетам, особенно большим, следовало бы поторопиться сформироваться до того, как Солнце бы зажглось, – и это была не единственная их проблема.
Как только в облаке сформировался диск, твердые частицы пыли и льда стали присоединяться друг к другу посредством электростатических сил (таких, как статическое электричество и некоторые другие явления, например силы Ван-дер-Ваальса, которые я оставлю читателю для самостоятельного ознакомления), поскольку они еще были недостаточно массивными, чтобы притягиваться друг к другу силой гравитации. Турбулентные завихрения газа, вероятно, позволили частицам льда и пыли зависнуть поблизости друг от друга и вращаться достаточно долго, чтобы сцепиться. Весьма похоже на то, как образуются комки пыли (по крайней мере, у меня дома).
Но для создания даже маленькой планеты первые частички пыли, минеральные и ледяные, должны были расти, чтобы силой собственной гравитации притягивать больше массы и увеличиваться. Проще сказать это, чем сделать. Когда собирающиеся частички были очень малы (порядка микрона, примерно размером с бактерию), они свободно летали по газовому диску, двигаясь с газом и в то же время присоединяясь друг к другу электростатическими силами. Став достаточно большими, скажем, диаметром 1 см или больше того, частицы стали сильнее испытывать притяжение Протосолнца и слабее – силу выталкивания наружу давлением газа. В результате их вращение вокруг Протосолнца стало походить на то, как обращаются по орбитам планеты, уже точнее соблюдая траектории Кеплеровых орбит. Эти сформированные куски будут лететь по орбите быстрее, чем газ в диске, и поэтому встретят сопротивление газа – оно замедлит их движение и направит по спирали к центру облака.
Если этим кускам удается стать достаточно большими и достичь размера планетезимали (небесного тела размером с маленький астероид, скажем, от 10 м до 1 км), они могут двигаться сквозь газ, почти не испытывая встречного сопротивления и не скручиваясь по спирали к центру облака (или скручиваясь, но очень медленно), и уцелеть в противостоянии с газом (который будет вытеснен, о чем пойдет речь ниже). Достигнув километрового диаметра, эти тела, уже достаточно тяжелые, смогут притягивать еще больше массы и расти еще быстрее.
В то же время объекты среднего размера, от нескольких сантиметров до метра в диаметре, подвергнутся сильному встречному сопротивлению газа, которое заставит их быстро закручиваться по спирали и сгинуть в Протосолнце всего через 200 лет – мгновение по космическим меркам! Вдобавок эти куски будут недостаточно тяжелыми, чтобы притягивать друг друга, наоборот, они будут взаимно отталкиваться.