Книга: Электроника для начинающих (2-е издание)
Назад: Эксперимент 28. Демонстрируем самоиндукцию катушки
Дальше: Эксперимент 30. Искажение звука

Эксперимент 29. Фильтрация частот

В этом эксперименте вы будете менять звучание. С помощью катушек индуктивности и конденсаторов можно фильтровать участки спектра звуковых частот для создания большого разнообразия эффектов.

Что вам понадобится

• Макетная плата, монтажный провод, кусачки, инструмент для зачистки проводов, тестовые провода, мультиметр
• Источник питания на 9 В (батарея или сетевой адаптер)
• Динамик с импедансом 8 Ом, диаметром как минимум 10 см (1 шт.)
• Микросхема аудиоусилителя LM386 (1 шт.)
• Монтажный провод 22-го калибра (диаметр 0,64 мм), 30 метров
• Небольшой пластиковый контейнер в качестве корпуса динамика (1 шт.)
• Таймер 555 (1 шт.)
• Резистор с номиналом 10 кОм (2 шт.)
• Конденсаторы емкостью 0,01 мкФ (3 шт.), 2,2 мкФ (1 шт.), 100 мкФ (1 шт.), 220 мкФ (3 шт.)
• Подстроечные потенциометры с номиналами 10 кОм (1 шт.) и 1 МОм (1 шт.)
• Однополюсные ползунковые переключатели на два направления (4 шт.)
• Кнопка (1 шт.)

Корпус для динамика

Тот небольшой динамик, который я рекомендовал для предыдущих проектов, вполне подходил для воспроизведения простых звуковых сигналов, но небольшие динамики плохо воспроизводят низкие частоты. Поскольку мне хотелось бы, чтобы вы услышали, как электронные компоненты могут влиять на эти частоты, пришло время познакомиться с большим динамиком, например таким, как на рис. 5.40, который имеет диффузор диаметром 10 см.
Рис. 5.40. Динамик, подходящий для этого эксперимента
Рис. 5.41. Резонирующий корпус позволит лучше услышать басы (низкие частоты) от вашего динамика
Принимая во внимание мои предыдущие комментарии о необходимости подавления несовпадающих по фазе звуковых волн с задней стороны динамика, вам понадобится корпус для него. Он будет усиливать звук за счет резонанса, таким же образом как корпус акустической гитары резонирует в ответ на колебания ее струн.
Если у вас есть время сделать добротный кожух из фанеры, это было бы идеально, но самое простое и дешевое решение — пластиковый контейнер с защелкивающейся крышкой. На рис. 5.41 изображен такой контейнер с закрепленным на дне динамиком. Просверлить аккуратные отверстия в пластике довольно сложно, и поэтому я особо не старался.
Чтобы улучшить характеристики пластикового контейнера, перед закрытием крышки можно поместить внутрь какую-либо мягкую, плотную ткань. Полотенца для рук будет достаточно для частичного поглощения вибрации.

Усилитель на одной микросхеме

В далекие 50-е годы для того, чтобы построить звуковой усилитель, вам понадобились бы электровакуумные лампы, трансформаторы и другие энергоемкие тяжеловесные компоненты. Сегодня вы можете примерно за доллар купить микросхему, которая выполнит всю работу, если вы добавите несколько конденсаторов и регулятор громкости.
Одна из самых простых, дешевых и доступных микросхем аудиоусилителя — LM386, которую выпускают многие производители; каждый из них добавляет к маркировке дополнительные буквы и цифры. Варианты LM386N-1, LM386N и LM386M-1 для наших целей идентичны. Проверьте только, что вы покупаете версию для установки через монтажные отверстия, а не для поверхностного монтажа. Цоколевка микросхемы показана на рис. 5.42.
Рис. 5.42. Цоколевка микросхемы-усилителя LM386
Эта маленькая микросхема работает от источника питания в 4-12 В постоянного тока, и хотя ее номинальная мощность всего 1,25 Вт, вас удивит громкость звучания. Она имеет номинальный коэффициент усиления 20:1.

Проверка работоспособности усилителя

В целях проверки мне бы хотелось, чтобы источник звукового спектра частот перекрывал широкий диапазон слышимого спектра частот. Простой способ добиться этого — собрать генератор на таймере 555. В верхней части схемы на рис. 5.43 показан таймер в режиме автоколебаний, а номиналы компонентов таковы, что обеспечивается диапазон частот примерно от 70 Гц до 5 кГц, когда вы поворачиваете подстроечный потенциометр номиналом 1 МОм. К сожалению, шкала окажется нелинейной: небольшой поворот потенциометра будет иметь гораздо больший слышимый эффект для верхних частот, чем для нижних. Однако для демонстрации этого достаточно, да и в любом случае фильтрация нижних частот на слух воспринимается заметнее.
Рис. 5.43. Принципиальная схема устройства для экспериментов со звуком
Компоновка макетной платы для этой схемы приведена на рис. 5.44, а расположение и номиналы компонентов — на рис. 5.45.
Если вы собираете эту схему, должен предупредить вас, что усилители очень чувствительны к любым электрическим колебаниям, а не только к тем, которые вы желаете услышать. Любые электрические помехи будут воспроизводиться в виде различных скрипучих и жужжащих звуков, и эта проблема усугубится, если вы соедините компоненты чрезмерно длинными проводами.
Перемычки со штекерами на концах крайне нежелательны в схеме усилителя, поскольку они ведут себя как радиоантенны. Я попытался по возможности уменьшить длину проводов на макетной плате (см. рис. 5.44) и рекомендую вам сделать то же самое. Единственное место, где длина провода не играет роли, — выход микросхемы, куда вам необходимо подключить провода к катушке и динамику.
Рис. 5.44. Макет экспериментальной аудиосхемы
Для катушки индуктивности идеально подойдет обмоточный провод 22-го калибра или тоньше (диаметром 0,64 мм или меньше), но вы получите заметные результаты и при использовании 30-метровой катушки монтажного провода 22-го калибра, а 60 метров монтажного провода, который я предлагал в предыдущем эксперименте, окажутся еще лучше.
Рис. 5.45. Расположение и номиналы компонентов экспериментальной аудиосхемы
Теперь, прежде чем подать питание на макетную плату, пожалуйста, проверьте три ползун- ковых переключателя в нижней части схемы и убедитесь в том, что все они находятся в нижнем положении. Другими словами, переключите их к низу макетной платы. Также установите два подстроечных потенциометра на половину их рабочего диапазона.
Вы можете подать питание для этого устройства от сетевого адаптера или от 9-вольтовой батареи, стабилизация необязательна. Тем не менее, если вы используете адаптер, он может создавать гудение. Уменьшить этот эффект можно, подключив конденсатор емкостью 1000 мкФ (или больше) между двумя шинами питания макетной платы. Если вы питаете устройство от батареи, то потребление энергии усилителем ограничит срок работы батареи до 2-3 часов, а некоторые звуковые фильтры будут слегка понижать напряжение, что повлияет на частоту звука, создаваемого таймером 555.
Как только вы подключите питание, то должны услышать какой-либо звуковой тон. Если сигнала нет, то первым делом при поиске неисправностей вы должны отключить верхний вывод конденсатора емкостью 220 мкФ от выхода таймера 555 и быстро коснуться проводами динамика между этим выводом и отрицательной шиной. Если вы снова ничего не услышали, значит, неправильно подключили таймер. Если какой- то звук появился, то ошибка связана с микросхемой усилителя LM386. Проверьте, что вы не ошиблись при подключении питания к выводам микросхемы LM386. Контакты питания расположены иначе, чем у логических микросхем.
Все равно нет звука? Выньте верхнюю часть короткой перемычки слева от микросхемы LM386 выше потенциометра на 10 кОм. Коснитесь конца этого провода пальцем, и вы должны услышать свистящие или жужжащие звуки, потому что он ведет ко входу усилителя (контакту 4). По-прежнему ничего? Попробуйте подключить динамик между отрицательным выводом конденсатора С6 и отрицательной шиной источника питания. С6 — это разделительный конденсатор, подключенный напрямую к выходу микросхемы LM386. Если ни одна из этих попыток не увенчалась успехом, вам придется тщательно прозвонить всю схему мультиметром, проверяя напряжение.

Опыты со звуком

Предполагаю, что ваша схема теперь настроена и работает. Я объясню функции компонентов, прежде чем предложу попробовать кое-что еще. Обратимся к схеме устройства (рис. 5.43) и макетной плате (рис. 5.44).
Конденсатор С1 вместе с подстроечным потенциометром 1 МОм задает частоту таймера. Если вы захотите услышать звук выше 5 кГц, можно использовать конденсатор емкостью 0,0068 мкФ (6,8 нФ).
Конденсатор С5 является разделительным. Он имеет большую емкость и поэтому будет «прозрачным» для широкого диапазона частот. Он предназначен для блокировки постоянной составляющей с выхода таймера 555, поскольку вам требуется усилить только колебания, а не основное напряжение.
Конденсатор С6 — это еще один разделительный конденсатор, защищающий динамик от постоянного тока, который идет от усилителя.
Конденсатор С7 соединяет выход усилителя с отрицательной шиной, когда вы нажимаете кнопку рядом с ним. Номинал конденсатора С7 подобран так, чтобы он замыкал верхние частоты на землю. Без этих частот звук, воспроизводимый динамиком, становится более мягким.
Конденсатор С4 включается и выключается пол- зунковым переключателем S3. Когда вы устанавливаете его ползунок вверх, звук от таймера 555 проходит через конденсатор С4 к усилителю. Поскольку емкость С4 мала, он не пропускает нижние частоты, делая звук «суше» и резче.
Наиболее сложная часть схемы связана с катушкой индуктивности. Мне хотелось, чтобы вы услышали различие между параллельным и последовательным подключением катушки к динамику. Переключатели S1 и S2 дают вам возможность такого выбора, как показано на рис. 5.46 и 5.47. Когда катушка подключена параллельно динамику, иногда говорят, что она шунтирует динамик.
Рис. 5.46. Переключатели S1 и S2 позволяют вам подключить внешнюю катушку последовательно или параллельно динамику
Рис. 5.47. С помощью S1 и S2 можно также закоротить катушку и отключить динамик от усилителя
Здесь у вас много возможностей для экспериментов, особенно если учесть то, что вы можете регулировать частоту и громкость звучания во время исследования различных фильтров. Вы также можете проверить эффект от одновременного применения двух фильтров. Например, нажмите кнопку, чтобы подключить шунтирующий конденсатор С7, который срезает верхние частоты, и одновременно переключателем S3 включите в цепь конденсатор С4, срезающий нижние частоты. У вас получится полосовой фильтр, называемый так потому, что он пропускает лишь узкую полосу частот среднего диапазона.
Подстроечный потенциометр 10 кОм внизу слева служит регулятором громкости, но вы обнаружите, что он работает корректно только в средней части диапазона. При крайних положениях движка потенциометра схема может самовозбуждаться. Это характерно для усилителей. Для решения проблемы добавляют конденсаторы большой и малой емкости в различных участках схемы. Я не стал беспокоиться по этому поводу, потому что для наших целей вполне хватит средних значений сопротивления.
Конденсаторы и катушки индуктивности в этой схеме работают в качестве пассивных элементов. Они только подавляют определенные частоты, но не усиливают сигнал. Более сложные системы содержат транзисторы для активной фильтрации, но для них требуется гораздо больше компонентов.

Форма колебаний

Если вы дунете в горлышко бутылки, то услышите сочный звук, вызванный вибрацией воздуха внутри бутылки. Если бы вы могли графически изобразить звуковые волны, то убедились бы, что они имеют плавную закругленную форму. Если бы вы могли замедлить время и нарисовать график переменного напряжения в домашней сетевой розетке, он выглядел бы аналогично.
Если бы вы могли измерить скорость маятника, который медленно качается из стороны в сторону в вакууме, и нарисовать график зависимости скорости от времени, то снова получили бы такую же картину.
Эта форма колебаний — синусоидальная волна, называемая так потому, что вы можете получить ее из элементарной тригонометрии. Допустим, что в прямоугольном треугольнике одна из сторон, примыкающая к прямому углу, обозначена буквой «а». Если вы разделите длину стороны «а» на длину наклонной стороны (гипотенузы) треугольника, в результате получится синус угла, которому противолежит сторона «а».
Чтобы упростить картину, представьте шар на веревке, вращающийся вокруг центральной точки, как показано на рис. 5.48. Не будем учитывать гравитацию, сопротивление воздуха и другие отвлекающие факторы. Просто измеряйте высоту подъема шара и делите ее на длину веревки через равные интервалы времени, пока шар движется по кругу с постоянной скоростью. Отобразите результаты в виде графика, и у нас получится синусоида, показанная на рис. 5.49. Заметьте, что когда шар движется по кругу ниже своей исходной горизонтальной линии, мы считаем это расстояние отрицательным, и таким образом синусоида также становится отрицательной.
Рис. 5.48. Вы можете нарисовать синусоиду с помощью простых геометрических соотношений
Почему эта специфическая кривая встречается в природе во многих случаях и связана с разными явлениями? Причины этого кроются в физике, но я предоставляю вам самим разобраться в этой теме, если она вам интересна. Если вернуться к воспроизведению звука, то для нас важны следующие моменты:
• Статическое давление воздуха вокруг нас называется атмосферным давлением. Оно возникает вследствие притяжения воздуха под действием сил гравитации. (Да, воздух также обладает массой.)
• Почти любой звук представляет собой два последовательных участка сжатия и расширения: с давлением выше и ниже атмосферного — совсем как волны в океане.
• По аналогии мы можем изобразить волны сжатия и расширения как напряжение, амплитуда которого меняется от максимума к минимуму и обратно (рис. 5.49).
• Любой звук можно разложить на совокупность синусоидальных волн различной частоты и амплитуды.
• И наоборот: если вы сведете вместе правильно подобранные звуковые синусоидальные волны, то сможете создать абсолютно любой звук.
Рис. 5.49. Синусоидальная звуковая волна, создаваемая любым инструментом, заставляющим воздух вибрировать, например флейтой. Это приятный и гармоничный звук
Предположим, два звука воспроизводятся одновременно. На рис. 5.50 частота одного сигнала выше, чем другого (показаны две синусоидальные кривые с разным периодом). Когда эти два звука распространяются как волны сжатия в воздухе или как переменные электрические токи по проводу, их амплитуды складываются и создают более сложную кривую, которая изображена черным цветом. Теперь попробуйте вообразить сложение десятков или сотен различных частот, и вы получите представление о сложной звуковой волне какого-либо музыкального фрагмента.
Рис. 5.50. Когда две синусоидальные волны генерируются одновременно (например, двумя музыкантами, играющими на флейтах), объединенный звук представляет собой сложную кривую
Рис. 5.51. Прямоугольный сигнал, формируемый таймером 555, который резко включается и выключается
Таймер 555 в режиме мультивибратора генерирует прямоугольную последовательность. Это связано с тем, что выход таймера резко переключается с низкого на высокий уровень и обратно. Результат показан на рис. 5.51. Синусоидальный сигнал на слух воспринимается мягко и мелодично, поскольку он изменяется плавно. Прямоугольная последовательность звучит резко и сопровождается искажениями. На самом деле такой сигнал содержит гармоники, т.е. частоты, которые в несколько раз превышают основную частоту.
Поскольку прямоугольная последовательность содержит высокочастотные гармоники, она удобна для проверки звуковых фильтров. Фильтр нижних частот, который пропускает только нижние частоты, будет уменьшать искажения, «скругляя углы» прямоугольного сигнала.

Немного исказим звучание музыки

Возможно, вы задаете себе такой вопрос: если микросхема LM386 является усилителем звука, то сможет ли она усилить музыку? Да, для этого она и предназначена. Вы можете проверить это самостоятельно, используя любое аудиоустройство с выходом для наушников.
Имейте в виду, что микросхема LM386 — это одноканальный усилитель, поэтому вы не сможете услышать оба аудиоканала вашего плеера. Чтобы подключиться к одному из них, возьмите кабель с миниатюрными аудиоразъемами на концах. Отрежьте один из разъемов, снимите изоляцию, и вы обнаружите оплетку из тонких проводов, которые являются экраном, предназначенным для подключения к шине заземления. Внутри оплетки находятся два проводника, несущие сигналы от левого и правого каналов. Отрежьте один из них (неважно какой), но следите, чтобы оставшийся проводник не замкнулся с экраном.
Рис. 5.52. Аудиокабель зачищен, чтобы обеспечить доступ к его экрану и центральному проводнику
Снимите изоляцию с оставшегося проводника. Провода внутри очень тонкие, и вам будет проще с ними работать, если вы скрутите и спаяете жилки вместе. Желаемый результат показан на рис. 5.52.
Убедитесь в том, что питание вашей схемы усилителя отключено, и переведите все ползун- ковые переключатели в нижнее положение. Удалите отрезок провода, который соединяет вывод 3 таймера 555 с расположенным под ним конденсатором емкостью 220 мкФ. Тем самым вы отключаете таймер 555 и сможете в дальнейшем подать входной сигнал на положительную обкладку конденсатора С6.
Подсоедините один конец тестового провода с зажимом «крокодил» к положительному выводу конденсатора С6, а второй — к центральному проводнику аудиокабеля. Вторым тестовым проводом соедините экран кабеля с отрицательной шиной схемы. Очень важно, чтобы музыкальный плеер и схема усилителя имели общее заземление.
Включите вашу схему, затем плеер, и вы должны услышать музыку. Если она слишком громкая и искаженная, то необходимо добавить резистор с номиналом 1 или 10 кОм между аудиопроводом от музыкального плеера и положительной обкладкой конденсатора.
Как только вы добьетесь приемлемой громкости, то сможете поэкспериментировать с фильтрами верхних и нижних частот, чтобы понять, как они влияют на звучание. Улучшить воспроизведение не удастся, но изменить оттенки звука можно.

Разделительные цепи

В традиционной аудиосистеме в одном корпусе находятся два динамика: меньший, называемый «пищалкой» (tweeter), воспроизводит верхние частоты, и больший, называемый «вуфером» (woofer), воспроизводит нижние частоты. В современных системах часто выносят низкочастотный динамик в отдельный корпус, который можно разместить где угодно, поскольку на слух трудно определить направление прихода звуков низкой частоты. В такой системе низкочастотный динамик называют сабвуфером, потому что он может воспроизводить очень низкие частоты.
Аудиочастоты разделяются между динамиками верхних и нижних частот путем фильтрации, чтобы высокочастотный динамик не пытался иметь дело ни с какими низкими частотами, а низкочастотный — с высокими. Цепь, которая осуществляет такую фильтрацию, называется разделительной, а, как известно, аудиофилы высшей пробы собирают такие фильтры самостоятельно и подключают их (особенно в автомобилях) к своим динамикам, корпуса которых они также проектируют и изготавливают сами.
Если вы хотите собрать подобный разделительный фильтр, следует подобрать высококачественные конденсаторы из полиэфирного пластика (они неполярные, более надежные и прослужат дольше, чем электролитические аналоги) и катушку индуктивности с точно рассчитанными размерами и числом витков, чтобы получить требуемую частотную характеристику. На рис. 5.53 изображен неполярный конденсатор из полиэфирного пластика, а на рис. 5.54 — разделительная катушка индуктивности, которую я купил в интернет-магазине eBay за 6 долларов. Мне было интересно узнать, как она устроена, и поэтому я разобрал ее.
Рис. 5.53. Высококачественный полиэфирный пленочный конденсатор
Рис. 5.54. Что интересного мы обнаружим внутри этой катушки?
Рис. 5.55. Изолента удалена, теперь видна катушка из обмоточного провода
Рис. 5.56. Катушка индуктивности для разделительного аудиофильтра состоит лишь из пластмассового каркаса и обмотки
Сначала я снял черную виниловую ленту, которая закрывала обмотку. Внутри оказался обычный медный обмоточный провод с тонким покрытием из шеллака или из полупрозрачного пластика (рис. 5.55). Я размотал этот провод, сосчитав при этом число витков. На рис. 5.56 показан провод и каркас, на котором он был намотан.
Итак, технические характеристики этой катушки для разделительного аудиофильтра таковы: 12 метров медного обмоточного провода 20-го калибра, образующего 200 витков на небольшом пластмассовом каркасе.
Вывод: аудиокомпоненты окружены неким «таинственным» ореолом. Их цена зачастую завышена, и вы вполне можете самостоятельно изготовить катушку индуктивности, если будете ориентироваться на указанные параметры и затем скорректируете их под свои нужды.
Допустим, вы хотите установить в своем автомобиле очень мощные низкочастотные динамики. Сможете ли вы создать собственный фильтр так, чтобы они воспроизводили только нижние частоты? Конечно — потребуется лишь добавить больше витков, пока катушка индуктивности не станет срезать необходимую часть верхних частот. Проверьте только, что сечение провода достаточно большое, чтобы он не перегревался, когда вы пустите по нему звуковую мощность в 100 ватт и выше.
Вот еще одно устройство, о котором стоит серьезно подумать: светомузыка. Вы можете сделать отвод от выхода стереосистемы и с помощью фильтров разделить аудиочастоты на три канала, подключив к каждому отдельную группу цветных светодиодов. Красные светодиоды будут светиться при низких тонах, желтые — при средних, а зеленые — при высоких (цвет можете подобрать на свой вкус). Последовательно со светодиодами можно подключить импульсные диоды, чтобы выпрямить переменный ток, и резисторы, чтобы ограничить напряжение на светодиодах, скажем, до 2,5 В (когда громкость музыки максимальная). С помощью мультиметра выясните, какой ток проходит через каждый резистор, и умножьте это значение на величину падения напряжения на резисторе, чтобы найти рассеиваемую мощность и убедиться, что резистор способен ее выдержать, не сгорев.
Аудиосистемы — это обширная область для любителей проектировать и создавать электронные устройства самостоятельно.
Назад: Эксперимент 28. Демонстрируем самоиндукцию катушки
Дальше: Эксперимент 30. Искажение звука