Эксперимент 17. Генерируем звук
Теперь, когда вы знакомы с моностабильным и бистабильным режимами работы таймера 555, хочу познакомить вас с автоколебательным режимом (режим мультивибратора). Он называется так потому, что выходной сигнал постоянно колеблется между высоким и низким состояниями и не остается стабильным ни в одном из них.
Выходной сигнал таймера похож на сигнал от транзисторного генератора, который вы собрали в эксперименте 11, однако он более универсален и его параметры легче регулировать. Вместо двух транзисторов, четырех резисторов и двух конденсаторов для создания колебаний вам понадобится только одна микросхема, два резистора и один конденсатор.
Что вам понадобится
• Макетная плата, монтажный провод, кусачки, инструмент для зачистки проводов, мультиметр
• Источник питания на 9 В (батарея или сетевой адаптер)
• Микросхемы таймера 555 (4 шт.)
• Миниатюрный динамик (1 шт.)
• Резисторы с номиналами 47 Ом (1 шт.), 470 Ом (4 шт.), 1 кОм (2 шт.), 10 кОм (12 шт.), 100 кОм (1 шт.)
• Конденсаторы емкостью 0,01 мкФ (8 шт.), 0,022 мкФ (1 шт.), 0,1 мкФ (1 шт.), 1 мкФ (3 шт.), 3,3 мкФ (1 шт.), 10 мкФ (4 шт.), 100 мкФ (2 шт.)
• Диод серии 1N4148 (1 шт.)
• Подстроечный потенциометр на 100 кОм (1 шт.)
• Кнопка (1 шт.)
• Стандартные светодиоды (4 шт.)
Исследование автоколебательного режима
Типичная схема для работы таймера в режиме мультивибратора показана на рис. 4.21. Я подключил к выходу динамик, потому что частота сигнала будет находиться в звуковом диапазоне. Последовательно с динамиком включен резистор, чтобы ограничить силу тока, и разделительный конденсатор, который пропускает звуковые частоты и препятствует прохождению постоянного тока. Номиналы этих компонентов я приведу далее. А сейчас мне хотелось бы, чтобы вы увидели лишь общую схему.
Резисторы R1, R2 и конденсатор С1 определяют частоту мультивибратора. Эти обозначения всегда присутствуют в техпаспортах и других источниках, и я придерживаюсь данной традиции.
Конденсатор С1 выполняет ту же функцию, что и времязадающий конденсатор таймера в моностабильной схеме на рис. 4.11. Необходимость двух резисторов вместо одного будет пояснена ниже.
Сможете ли вы самостоятельно понять, как работает эта схема, используя те знания, которые вы получили в эксперименте 16? Первое, что сразу бросается в глаза, — это отсутствие входа. Контакт 2 (запуск) подключен к контакту 6 (порог). Догадываетесь, как это будет работать? Конденсатор С1 будет накапливать заряд, как и в ждущем режиме, пока напряжение на нем не достигнет 2/3 величины напряжения питания, после чего он разрядится через резистор R2 и вывод 7, и напряжение на нем упадет. Поскольку контакты 2 и 6 соединены друг с другом, это означает, что запускающий вывод отслеживает снижение напряжения на конденсаторе С1.
Рис. 4.21. Обобщенная принципиальная схема цепи для запуска таймера 555 в автоколебательном режиме
Когда напряжение на контакте 2 резко упадет, таймер запустится. Таким образом, в этой схеме таймер будет перезапускать сам себя.
Как быстро это будет происходить? Полагаю, вам стоит собрать макет этой схемы, чтобы все выяснить. На рис. 4.22 я указал номиналы компонентов и перерисовал схему, добавив подстроечный потенциометр, чтобы вы смогли увидеть (или, скорее, услышать) эффект от изменения его сопротивления. Подстроечный потенциометр и соединенный с ним резистор 10 кОм в сумме составляют сопротивление R2. Емкость времязадающего конденсатора С1 равна 0,022 мкФ, а сопротивление R1 — 10 кОм.
Рис. 4.22. Схема для исследования таймера в автоколебательном режиме
Рис. 4.23. Компоновка макетной платы для исследования таймера в автоколебательном режиме
Рис. 4.24. Расположение и номиналы компонентов
На рис. 4.23 приведена компоновка макетной платы, а на рис. 4.24 — размещение и номиналы компонентов.
Что произойдет, когда вы подадите питание? Динамик сразу же начнет издавать звуковой сигнал. Если вы ничего не слышите, значит, почти наверняка сделали ошибку в подключении. Обратите внимание на то, что вам больше не нужно активировать микросхему с помощью кнопки. Таймер 555 запускает себя сам, как и предполагалось.
Перемещайте движок потенциометра, и тональность звука будет меняться. Потенциометр регулирует скорость заряда и разряда конденсатора С1, и это определяет соотношение длительности интервалов включения и выключения звукового сигнала. При указанных номиналах компонентов частота импульсов варьирует между 300 и 1200 Гц. Импульсы поступают на динамик. В результате его диффузор перемещается вверх и вниз, создавая продольные волны в воздухе, а ваше ухо воспринимает их как звук.
Частота выходного сигнала
Частота звука — это число полных периодов в секунду, каждый из которых содержит импульс высокого давления и следующий за ним импульс низкого давления.
Термин герц — это единица измерения частоты, означающая то же самое, что и «период в секунду». Она была введена в употребление в Европе и названа в честь еще одного первопроходца в сфере электричества, Генриха Герца. Аббревиатура герц — Гц; таким образом, сигнал на выходе у вашего таймера 555 в описанной схеме будет варьировать приблизительно между 500 и 1200 Гц.
Как и у большинства стандартных единиц, префикс «к» означает «кило-»; таким образом, значение 1200 Гц можно записать как 1,2 кГц.
Как номиналы времязадающего конденсатора и резисторов определяют частоту сигнала на выходе таймера? Если значения R1 и R2 измеряются в килоомах, а емкость С1 — в микрофарадах, то частота f в герцах определяется как:
f = 1440/(((2 × R2) + R1) × C1)
Выполнять расчеты по формуле скучно, и поэтому я снабжаю вас таблицей (табл. 4.2). Предполагается, что номинал резистора, обозначенного на схеме как R1, является постоянным и равным 10 кОм. Шапка таблицы содержит номиналы резистора R2. В боковике таблицы указана емкость времязадающего конденсатора С1.
Вы, должно быть, помните, что аббревиатура пФ означает «пикофарад», это одна миллионная доля микрофарад. Нанофарад находится посредине между микрофарадами и пикофарадами, но эта единица измерения в США применяется редко, и поэтому ее нет в данной таблице.
Таблица 4.2. Частота выходного сигнала, Гц
Что происходит внутри таймера 555, работающего в режиме мультивибратора
Для лучшего понимания того, что происходит, когда таймер работает в автоколебательном режиме, посмотрите на рис. 4.25. Внутренняя конфигурация точно такая же, как в ждущем режиме, отличаются только внешние цепи.
Как и ранее, сначала триггер заземляет время- задающий конденсатор С1. Но теперь низкое напряжение с этого конденсатора подается от контакта 6 к контакту 2 через внешний провод. Это служит толчком к самозапуску микросхемы. Триггер послушно переключается в положение «включено» и посылает положительный импульс на динамик, убирая в то же время отрицательное напряжение с контакта 6.
Теперь конденсатор С1 начинает заряжаться, так же, как и в ждущем режима, но теперь он заряжается через последовательно соединенные резисторы R1 и R2. Поскольку емкость конденсатора С1 невелика, он заряжается быстро. Когда напряжение на С1 достигает величины 2/3 полного напряжения, компаратор В вступит в игру как и ранее, разряжая конденсатор и прерывая выходной импульс на контакте 3.
Рис. 4.25. Функциональная схема таймера 555 а режиме автоколебаний
Конденсатор разряжается через резистор R2 и контакт 7 (вывод разряда). Когда конденсатор разряжается, напряжение на нем падает. Но это напряжение по-прежнему подключено к контакту 2. Когда оно упадет до одной трети (или менее) от полного напряжения, включится компаратор А и выдаст триггеру другой импульс, начиная процесс заново.
Несимметричность интервалов «включено/выключено»
Когда таймер работает в автоколебательном режиме, конденсатор С1 заряжается через последовательно соединенные резисторы R1 и R2. Но разряд конденсатора С1 на микросхему происходит только через резистор R2. Поскольку этот конденсатор заряжается через два резистора, а разряжается только через один из них, он заряжается медленнее, чем разряжается. Пока С1 заряжается, выходной сигнал на контакте 3 находится в высоком состоянии; когда С1 разряжается, выходной сигнал оказывается в низком состоянии. В результате этого длительность состояния «включено» всегда больше, чем «выключено». Сказанное наглядно иллюстрирует рис. 4.26.
Рис.4.26. При стандартном включении таймера 555 в режиме автоколебаний импульсы всегда длиннее, чем паузы между ними
Если вы желаете, чтобы интервалы включения и выключения были одинаковыми, или если необходимо раздельно задавать их длительность (например, нужно отправлять на другую микросхему очень короткий импульс с последующей длительной паузой до следующего импульса), то все, что потребуется, — это добавить диод, как показано на рис. 4.27. Поскольку на диоде падает часть напряжения, такая схема будет лучше работать с источником питания выше 5 В.
Теперь, когда конденсатор С1 заряжается, электрический ток проходит через резистор R1 как и ранее, но идет в обход резистора R2 через диод. Когда конденсатор С1 разряжается, диод закрыт, поэтому разряд происходит через резистор R2.
Теперь резистор R1 определяет время заряда, a R2 — время разряда. Формула для приближенного вычисления частоты теперь выглядит так:
Частота = 1440 / ((R1 + R2) × С1),
где номиналы R1 и R2 измеряются в килоомах, а емкость С1 — в микрофарадах. (Я употребил слово «приближенного», потому что диод добавляет в цепь небольшое сопротивление, которое не отражено в данной формуле.)
Рис. 4.27. Добавление диода в обход резистора R2 позволяет независимо задавать длительность высокого и низкого выходного сигнала таймера
Если вы сделаете номиналы R1 и R2 равными, то должны получить почти одинаковую продолжительность интервалов включения и выключения.
Вариант регулировки частоты
Частоту выходного сигнала можно регулировать не только потенциометром, меняющим эквивалентное сопротивление R2, но и в некоторой степени с помощью контакта 5 (вывод управления). Это показано на рис. 4.28.
Отключите конденсатор, который был подсоединен к контакту 5, и замените его цепочкой резисторов, как показано на рис. 4.28. В данной схеме при любом положении движка потенциометра между выводом 5 и положительной или отрицательной шинами источника питания всегда будет сопротивление 1 кОм. Подключение управляющего вывода напрямую к источнику питания не повредит таймер, однако при этом звук не будет слышен. По мере вращения потенциометра будет изменяться частота. Это происходит из-за того, что меняется эталонное напряжение на компараторе В внутри микросхемы.
Рис. 4.28. Схема, демонстрирующая работу управляющего вывода таймера 555
Последовательное соединение таймеров
Микросхемы таймера можно соединить четырьмя различными способами. Обратите внимание, что эти конфигурации работают независимо от того, в каком режиме (ждущем или автоколебательном) находится каждый из таймеров (за исключением специально оговоренных случаев).
• Если один из таймеров питается от источника 9 В, то его выходного сигнала будет достаточно для питания другого таймера 555 (рис. 4.29).
Рис. 4.29. Один таймер питает другой
Рис. 4.30. Один таймер запускает другой
• Выходной сигнал одного таймера может запускать другой таймер. Это верно только тогда, когда второй таймер работает в ждущем режиме. В режиме автоколебаний он будет запускать сам себя (рис. 4.30).
• Выходной сигнал с одного таймера можно подать на вывод сброса другого таймера (рис. 4.31).
• Выходной сигнал с одного таймера можно через подходящий резистор подать на управляющий вывод другого таймера (рис. 4.32).
Рис. 4.31. Один таймер управляет сбросом другого
Рис. 4.32. Один таймер управляет другим
С какой целью таймеры соединяют в цепочку? Например, вам может понадобиться, чтобы два таймера работали в моностабильном режиме так, чтобы в момент окончания высокого уровня напряжения на выходе первого таймера появлялся высокий уровень на втором, и наоборот. На самом деле вы можете соединить в цепочку сколько угодно таймеров, причем последний может запускать первый. Такое устройство может, например, управлять гирляндой светодиодов.
На рис. 4.33 показаны четыре таймера, соединенные друг за другом. Они подключены через разделительные конденсаторы, поскольку нам нужно, чтобы короткий импульс одного таймера запускал следующий. Без этих конденсаторов окончания импульса первого таймера в цепочке запускало бы второй таймер, однако выходной сигнал первого таймера оставался бы в низком состоянии, что привело бы к непрерывному запуску второго таймера.
Кроме того, на запускающем выводе каждого таймера нужно предусмотреть подтягивающий резистор номиналом 10 кОм, чтобы поддерживать его в высоком состоянии.
Если в цепочку соединены моностабильные таймеры, возникает интересный вопрос. Как они начнут работу? Я упоминал в эксперименте 16, что таймер 555 в ждущем режиме будет, как правило, выдавать одиночный спонтанный импульс при первом включении. Когда несколько таймеров соединены вместе, они все будут пытаться сделать это почти одновременно, а поскольку присутствуют небольшие отличия в заводских характеристиках, результат окажется непредсказуемым. Иногда они будут «успокаиваться» в правильной упорядоченной последовательности, а в других случаях светодиоды в результате будут включаться парами.
Совладать с этим можно с помощью подавления импульса, которое я описывал в эксперименте 16 (см. раздел «Подавление импульса» этой главы).
Рис. 4.33. Четыре таймера соединены в цепочку для запуска друг друга
Конденсатор емкостью 1 мкФ между контактом сброса и отрицательной шиной будет удерживать вывод сброса в низком состоянии достаточно долго, чтобы подавить начальный импульс таймера. Нагрузочный резистор 10 кОм, также подключенный к выводу сброса, будет поддерживать на нем стабильный потенциал, пока таймер работает.
Судя по моему опыту, этот прием работает хорошо, хотя таймеры различных производителей могут, по-видимому, вести себя различно, поскольку поведение вывода сброса не очень подробно документировано. Если у вас возникают трудности с подавлением импульса, попробуйте увеличить или уменьшить емкость конденсатора.
При соединении таймеров в цепочку возникает другая проблема — подавление импульса работает слишком хорошо. Вы включаете питание, и ничего не происходит, потому что выходные сигналы всех таймеров были подавлены.
Обойти эту проблему можно, убрав подавление импульса только у одного таймера. Он почти наверняка сгенерирует начальный импульс, когда получит питание, и это запустит остальную цепочку. Такая схема изображена на рис. 4.33.
Но, погодите-ка. Что значит «почти наверняка»? Электронные устройства должны работать совершенно предсказуемо. Всегда, а не «почти» всегда.
Согласен. Но нам не подвластно свойство таймеров 555 вытворять непредсказуемое, когда на них подают питание. Поэтому я добавил кнопку в верхней части схемы, которую можно использовать для запуска каскада, если он не начал работать самостоятельно.
Есть и другой вариант, в котором первый таймер цепочки запускается в автоколебательном режиме. Он выдает серию импульсов, которые проходят через другие таймеры, работающие в ждущем режиме, но обратная связь последнего таймера с первым разомкнута. В терминах электроники можно сказать, что первый таймер — ведущий (master), а остальные — ведомые (slaves).
Мне нравится эта конфигурация, поскольку она полностью предсказуема. Проблема в том, что вам необходимо настроить частоту сигнала ведущего таймера так, чтобы он генерировал очередной импульс в тот момент, когда последний ведомый таймер цепочки завершит свой импульс. Иначе первый таймер выдаст последующий импульс, прежде чем закончится импульс последнего, или же возникнет пауза между последним импульсом и очередным импульсом ведущего таймера.
Важно ли это, зависит от применения. Для огней в гирлянде это не проблема, но если вы управляете шаговым двигателем, то обеспечить правильную синхронизацию будет сложно.
Создание сирены
Четвертый вариант соединения двух таймеров (см. рис. 4.32) представляет для нас особый интерес, потому что так можно создать звук сирены, похожий на тот, который выдают обычные системы охранной сигнализации. Фактически, его можно было бы использовать для аудиовыхода в проекте сигнализации, который остался незаконченным в эксперименте 15.
На рис. 4.34 показана предлагаемая схема. Таймер 1 подключен для работы в автоколебательном режиме по схеме, подобной приведенной на рис. 4.21. Номиналы компонентов выбраны большими, и таким образом таймер генерирует колебания на частоте около 1 Гц. Можете сравнить эту схему с той, что приведена на рис. 2.115. Принцип тот же.
Таймер 2 также подключен для работы в режиме автоколебаний на частоте около 1 кГц. Идея заключается в том, что медленные колебания напряжения от таймера 1 подаются на управляющий вывод таймера 2, в результате возникает тот раздражающий звук, который мы ассоциируем с охранными системами.
Советую вам собрать эту схему, потому что она может понадобиться в заключительной версии охранной сигнализации, к которой мы приступим уже в следующем эксперименте 18. Компоновка макетной платы для сирены приведена на рис. 4.35, а расположение и номиналы компонентов — на рис. 4.36.
После того как вы ее запустите, попробуйте вынуть и заменить другим конденсатор емкостью 100 мкФ, подключенный между контактом 6 и заземлением. Этот конденсатор плавно повышает и понижает частоту, вместо резкого переключения между верхним и нижним значениями. Аналогично конденсатор был использован для плавного включения и выключения светодиода в эксперименте 11.
Рис. 4.34. Один таймер работает относительно медленно, модулируя другой через управляющий вывод (контакт 5), в результате возникает звучание как у сирены сигнализации
Рис. 4.35. Макет сирены
Рис. 4.36. Расположение и номиналы компонентов для сирены
Вы можете изменить этот звук другими способами. Вот несколько предложений:
• Измените номинал времязадающего конденсатора емкостью 0,1 мкФ, чтобы поднять или опустить высоту основного звука.
• Увеличьте или уменьшите емкость конденсатора 100 мкФ, подключенного к контакту 6, в два раза.
• Замените потенциометр с номиналом 10 кОм на резистор 1 кОм.
• Поменяйте емкость конденсатора 3,3 мкФ.
Один из приятных моментов при конструировании — возможность менять что-либо, подгоняя изделие под свой вкус. Как только звучание сирены вас удовлетворит, запишите номиналы компонентов на будущее.
Кстати, можно уменьшить количество микросхем, заменив два таймера 555 на одну микросхему 556, которая содержит пару таймеров 555 в одном корпусе. Но поскольку при этом число внешних соединений (кроме подключения к питанию) остается прежним, я не утруждал себя сборкой этого варианта.