Что потребуется для экспериментов второй главы
Как и ранее, прежде чем купить инструменты и оборудование, откройте главу 6 и посмотрите там список покупок в разделе «Приобретаемые инструменты и оборудование». Если вы хотите купить готовый набор компонентов и расходных материалов, смотрите раздел «Наборы». Если вы предпочитаете самостоятельно покупать компоненты и расходные материалы в интернет- магазинах, смотрите раздел «Компоненты».
Миниатюрные отвертки
На рис. 2.1 показан набор отверток производства компании Stanley (артикул 66-052). Отвертки, которые, возможно, уже есть у вас дома, могут оказаться слишком крупными для большинства маленьких винтов в компонентах.
Можно купить и более дешевый набор отверток, который очень похож на тот, что на рис. 2.1, но качество стали будет, разумеется, ниже, чем у продукции известных марок.
Рис. 2.1. Миниатюрные отвертки с прямыми и крестообразными шлицами. Расстояние между белыми линиями сетки равно 2,5 см
Небольшие плоскогубцы
Размер плоскогубцев, которые вам понадобятся — не более 13 см (от одного конца до другого), Они незаменимы для формовки провода или для захвата небольших деталей, которые неудобно брать пальцами. Не думаю, что в данном случае вам необходимо тратить деньги на фирменные инструменты, поэтому вы спокойно можете покупать более дешевые, например такие, как на рис. 2.2. У них подпружиненные ручки, что некоторым не очень нравится, но вы можете вытащить пружины, если у вас есть еще одни плоскогубцы.
Рис. 2.2. Подходящие плоскогубцы должны быть не длиннее 13 см
Удлиненные плоскогубцы
Это необязательный инструмент. Они похожи на небольшие плоскогубцы, но имеют очень тонкие остроконечные губки. Такие плоскогубцы удобны для захвата плотно установленных компонентов на макетной плате. Подобный инструмент можно найти на сайтах и в магазинах, которые специализируются на таком ремесле, как плетение из бисера. Будьте, однако, внимательны, и не покупайте плоскогубцы со скругленными губками (круглогубцы), т. к. они подходят в основном лишь для создания петель из провода. Для нас важно, чтобы внутренняя поверхность губок была плоской, как показано на рис. 2.3.
Рис. 2.3. Плоскогубцы для точных работ
Кусачки
Плоскогубцы обычно снабжены режущими кромками возле места крепления, с их помощью можно перерезать проволоку. Тем не менее, часто провод может оказаться прикрепленным еще к чему-либо, и вы не отрежете его плоскогубцами. Вам понадобятся кусачки (называемые также бокорезами), такие как на рис. 2.4 (длиной не более 13 см). Поскольку вам в основном придется иметь дело с тонким мягким медным проводом, к качеству этого инструмента особых требований нет.
Рис. 2.4. Кусачки должны быть не длиннее 13 см
Острогубцы
Острогубцы, изображенные на рис. 2.5, похожи на кусачки и предназначены для тех же операций, но они тоньше, компактнее и лучше приспособлены для работы в ограниченном пространстве. Однако они менее прочные. Использовать острогубцы или обычные кусачки — это личное предпочтение. Мне больше нравятся обычные кусачки.
Рис. 2.5. Острогубцы могут проникнуть в труднодоступные места по сравнению с обычными кусачками
Приспособление для зачистки проводов
Провода, с которыми вы будете иметь дело, покрыты пластиковой изоляцией. Приспособления для зачистки проводов специально предназначены для удаления небольшого участка изоляции, чтобы оголить находящийся внутри проводник. Отважные умельцы могут возразить, что для выполнения такой операции им не нужны какие-либо инструменты, когда-то так думал и я, но отколотые края двух моих передних зубов свидетельствуют, что это не лучшее решение (рис. 2.6).
Другой вариант — использовать кусачки, как показано на рис. 2.7. Захватив провод одной рукой, другой рукой аккуратно сжимаете губки кусачек, тяните провод и снимаете отрезок изоляции. Для приобретения этого навыка требуется практика. Порой кусачки соскальзывают, не сделав ничего, иногда просто перерезают провод, вместо того чтобы зачистить его. Специальное приспособление для зачистки проводов стоит недорого, но существенно облегчает работу.
Рис. 2.6. Торопитесь? Лень искать инструмент для зачистки проводов? Искушение очевидно, но результат будет плачевным
Рис. 2.7. Снять изоляцию с помощью кусачек не так просто. Инструмент для зачистки проводов намного удобнее
В первом издании книги предлагалось приобрести так называемое автоматическое устройство для зачистки проводов, которым можно пользоваться одной рукой. К сожалению, такие приспособления довольно дороги и многие из них не справляются с монтажным проводом 22-го калибра (диаметр 0,64 мм), который требуется для всех схем в этой книге. Поэтому я их больше не рекомендую.
Такой инструмент, как изображен на рис. 2.8, выпускают многие фирмы. Некоторые приспособления имеют ручки, согнутые под углом, другие — прямые или изогнутые. Это не важно. Все они работают одинаково: вы вставляете провод в подходящее по размеру отверстие, сжимаете губки и удаляете изоляцию.
Рис. 2.8. Рекомендуемый инструмент для зачистки проводов диаметром от 0,25 до 0,81 мм
Выбирая приспособление, вы должны быть внимательны, поскольку они подходят только для определенного диаметра провода.
Калибр провода — это показатель толщины проводника. Чем выше калибр, тем тоньше провод. Провод 20-го калибра (диаметр 0,81 мм) слишком толстый для наших целей, а 24-го калибра (диаметр 0,51 мм) — слишком тонкий. Оптимальная толщина провода — 22-й калибр (диаметр 0,64 мм), и вам будет гораздо проще работать, если вы купите инструмент, подходящий именно для этого калибра. На рис. 2.8 видно, что между отверстиями для проводов калибров 20 и 30 есть небольшое отверстие и для калибра 22. Значит, это подходящий инструмент для нашей работы.
Макетные платы
Макетные платы не понадобятся до эксперимента 8, но здесь я коротко расскажу об этих комплектующих. Макетная плата — это небольшая пластмассовая пластина со сквозными отверстиями, расположенными на расстоянии 2,54 мм. В эти отверстия можно вставить провода и другие компоненты. Ряды отверстий соединены между собой проводниками, встроенными в пластмассовое основание.
На макетной плате можно легко разместить и быстро соединить все компоненты схемы. Монтаж получается аккуратнее, чем с помощью тестовых проводов, которые вы использовали до сих пор, и это проще, чем пайка (к тому же, устройство можно быстро демонтировать).
Замечание
Макетные платы также называют платами для макетирования без пайки и иногда платами для создания прототипов.
Бренд или поставщик макетной платы не имеет значения, но вы должны быть внимательными при покупке, чтобы найти ту же конфигурацию, которую я использую в этой книге. Возможны три варианта, и только один из них правильный.
Вариант макетной платы «мини», показан на рис. 2.9. Он часто продается как «подходящий для среды Arduino», но не имеет достаточного количества отверстий для наших целей, поэтому не покупайте такие платы.
Рис. 2.9. Размеры мини-платы недостаточны для проектов из этой книги
Вариант макетной платы «одинарная шина» показан на рис. 2.10. Термин «шина» относится к длинному столбцу отверстий, расположенному рядом с короткими, пронумерованными рядами отверстий. С каждой стороны находится по одной шине, на фото они обведены рамкой. Этот тип макетной платы как раз вам и нужен. Чтобы убедиться, сверьте фотографию с изделием, которое вы покупаете. Также обратите внимание на то, что плата должна иметь 60 рядов отверстий и 700 контактных (или узловых) точек. Если вы делаете закупки самостоятельно, ищите в интернет-магазинах Amazon или eBay по запросу: solderless breadboard 700 ИЛИ беспаечная макетная плата 700.
Рис. 2.10. Макетная плата с одинарной шиной имеет один длинный ряд отверстий с каждой стороны
Рис. 2.11. Макетные платы со сдвоенной шиной имеют две пары длинных рядов отверстий (обведены на фотографии рамкой). Такой вариант макетных плат я больше не рекомендую
Вариант макетной платы «сдвоенная шина» показан на рис. 2.11. Здесь два длинных ряда отверстий с каждой стороны, которые и составляют сдвоенную шину (на фотографии обведены рамкой). Я рекомендовал этот вид платы в первом издании книги, потому что иногда он может оказаться более удобным. Впоследствии оказалось, что начинающие часто допускают ошибки при монтаже, особенно на этапе освоения платы. Поэтому я больше не советую работать с такой платой. Но если желаете, то можно выбрать эту плату и просто игнорировать дополнительные отверстия.
Теперь, когда мы разобрались с типом рекомендуемой макетной платы, выясним, сколько же вам их понадобится? Раньше я сказал бы «только одна», имея в виду то, что их можно использовать повторно, но теперь цена снизилась настолько, что вполне можно приобрести две или три. Так вы сможете собирать новые схемы, не разбирая старых.
Расходные материалы
Если вы хотите приобрести готовый набор компонентов и расходных материалов, смотрите раздел «Наборы» главы 6. Если вы закупаете расходные материалы самостоятельно, смотрите раздел «Расходные материалы» главы 6.
Монтажный провод
Для соединений на макетной плате вам понадобится монтажный провод. Иногда его еще можно найти в общей категории провод в бухтах. В любом случае провод должен быть одножильным и желательно 22-го калибра (диаметр 0,64 мм). Часто такой провод продают отрезками по 7,5 и 30 метров, намотанными на пластиковые катушки, как показано на рис. 2.12.
Метр провода обойдется дешевле, если вы покупаете 30-метровую катушку, но я советую вам купить мотки провода меньшей длины, но как минимум с тремя разными цветами изоляции.
Рис. 2.12. Монтажный провод длиной 7,5 и 30 метров на катушках
Цвет провода поможет вам, если вы ищете ошибку в собранной цепи. Красный и синий провода подойдут для подключения к плюсу и минусу источника питания, а провод какого-либо другого цвета — для остальных соединений.
Когда изоляция снята, оголяется твердый проводник, как показано на рис. 2.13. Сравните его с многожильным проводом, изображенным на рис. 2.14. Многожильный провод также применяется в некоторых случаях, о которых я далее расскажу, но если вы попытаетесь засунуть его в отверстия макетной платы, то вас постигнет неудача. Для наших экспериментов нужен обязательно одножильный провод.
Ранее я уже упомянул о необходимости инструмента для зачистки проводов, который предназначен для 22-го калибра (диаметр 0,64 мм), теперь снова подчеркну, что провод должен быть именно калибра 22, а не 20 и не 24. Провод 24-го калибра (диаметр 0,51 мм) неплотно входит в макетную плату и соединение окажется ненадежным, а провод 20-го калибра (диаметр 0,81 мм) немного толстоват, и когда вы пытаетесь его просунуть, он сгибается, вместо того чтобы встать на место; если все же удастся его просунуть, то потом нелегко вытащить.
На некоторых медных проводах под изоляцией видно серебристое покрытие. Такие провода называются «лужеными». Другие провода полностью медные, и у меня нет определенного мнения, какой из типов лучше.
Сколько провода вам потребуется? Для сборки схем из этой книги восьми метров провода каждого цвета будет более чем достаточно. Тем не менее, в экспериментах 26, 28 и 29 необходимо изготовить проволочную обмотку, чтобы исследовать взаимосвязь между электричеством и магнетизмом, а также построить собственный детекторный радиоприемник. Если вы пожелаете выполнить эти проекты (а они того стоят), вам понадобится 60 м провода. Решайте сами, поскольку ни один из готовых наборов не содержит столько провода. Для информации о покупке провода смотрите раздел «Расходные материалы» главы 6.
Рис. 2.13. Под пластиковой изоляцией должен находиться одножильный проводник
Рис. 2.14. В отдельных случаях (описанных далее) потребуется многожильный провод
Перемычки
Если вы отрежете кусочек провода, зачистите его с каждого конца как минимум на 0,5 см, но не более чем на 1 см, загнете концы книзу и вставите их в отверстия макетной платы, то получите перемычку, которая создает соединение между узловыми точками платы, пропустив несколько промежуточных отверстий. Такие перемычки делают монтаж схемы аккуратным и облегчают отыскание ошибок.
Проблема в том, что зачистка изоляции и изгиб провода под нужным углом очень утомительны, даже если вы делаете это с помощью подходящих инструментов. Поэтому целесообразнее купить уже нарезанный провод и готовые перемычки. Пример готового набора перемычек разной длины приведен на рис. 2.15. В качестве руководства по выбору нужных комплектующих смотрите раздел «Расходные материалы» главы 6.
Раньше я использовал готовые перемычки из набора, но отказался от них, потому что его перемычки различались по цвету в зависимости от длины, а не от функциональности. Все красные провода имели длину 0,5 см, желтые — 0,7 см и т. д.
Рис. 2.15. Набор перемычек разной длины для макетной платы
Мне нужно было, чтобы окраска провода соответствовала их назначению в схеме. Например, все красные провода, независимо от длины, всегда должны подключаться к плюсу источника питания.
Единственный способ добиться этого — нарезать провод самому, что я теперь и делаю. Если вы решите воспользоваться готовыми перемычками, то не забывайте, что их окраска может внести путаницу, кроме того, цена набора перемычек будет выше.
Есть еще один момент, который следует прояснить относительно перемычек. Многие предпочитают провода-перемычки, снабженные на концах маленькими штекерами, размер которых соответствует диаметру отверстий в макетной плате. Такие «штекерные перемычки» продаются связками, и, возможно, они будут первым вариантом, который вы встретите при онлайн- поиске проволочных перемычек.
Поскольку такие соединительные провода гибкие и имеют длину около 7,5 см, с их помощью можно выполнить почти любые соединения, которые вам понадобятся на схеме макетной платы. Их можно использовать повторно, и создается впечатление, что это самый простой, быстрый и дешевый вариант.
Если схема сразу заработала, значит все в порядке, но если вы ошибетесь, то найти ошибку будет сложно. На рис. 2.16 для примера показана некоторая схема не из этой книги, собранная с использованием гибких проводников со штекерами. На рис. 2.17 изображена та же схема с самодельными перемычками из одножильного провода 22-го калибра (диаметр 0,64 мм). В каждой из этих схем есть ошибка монтажа. На схеме с самодельными перемычками я увижу ее за несколько секунд. А там, где гибкие проводники со штекерами, придется немного покопаться, и, возможно, для поиска неисправности потребуется мультиметр.
Рис. 2.16. Схема собрана на двух макетных мини-платах с использованием гибких перемычек со штекерами на концах
Рис. 2.17. Та же схема, что и на рис. 2.16, но монтаж выполнен самодельными одножильными перемычками
К тому же, штекеры гибких перемычек иногда могут быть дефектными и не обеспечивать надежный контакт. Это делает поиск неисправностей практически невозможным.
Совет
Я не рекомендую выполнять монтаж гибкими перемычками со штекерами на концах.
Многожильный провод
Вернемся к многожильному монтажному проводу, у него есть одно преимущество. Он более гибкий, чем одножильный провод, что практично, если вы соединяете с его помощью монтажную плату с внешним переключателем или потенциометром. Гибкость особенно важна, если провод соединяется с подвижным или вибрирующим объектом.
И хотя гибкий провод не обязателен для проектов из этой книги, 7,5 метров многожильного провода 22-го калибра (диаметр 0,64 мм) время от времени могут пригодиться. Если вы решили его купить, рекомендую выбрать цвет, отличный от цвета одножильных проводов, чтобы не перепутать их.
Тумблер
Стандартный тумблер — это давно известный компонент, и он пригодится для экспериментов по переключению. Вам понадобятся два тумблера. Они должны быть обозначены как SPDT, что означает однополюсный переключатель на два направления. Я подробно объясню это чуть позже. Двухполюсный переключатель на два направления, обозначаемый как DPDT, также подойдет, но он немного дороже.
К тумблеру с зажимными клеммами проще подключать монтажный провод, однако другие варианты клемм также подойдут.
Внешний вид обычного тумблера иллюстрирует рис. 2.18. Приведенный образец — это Е-переключатель ST16DD00, но можно найти и более дешевые стандартные варианты.
Рис. 2.18. Стандартный тумблер
Кнопка
Кнопку иногда по непонятной причине называют тактильным переключателем. На самом деле это совсем не переключатель. Миниатюрная кнопка очень удобна для коммутации вручную различных цепей, особенно в схемах, собранных на макетной плате.
Наиболее распространенные кнопки имеют четыре маленькие лапки для вставки в отверстия платы, но такое крепление не всегда надежно, потому что зачастую эти лапки не фиксируются так, как положено. Кнопка может с легкостью выскочить в самый неожиданный момент. Я рекомендую вариант кнопки с двумя выводами, расположенными на расстоянии 0,5 см друг от друга. В устройствах этой книги будет применяться кнопка марки Alps SKRGAFD-010 (рис. 2.19). Подойдут и другие кнопки с двумя выводами, расположенными в 0,5 см друг от друга, например серия Panasonic EVQ.-11.
Рис. 2.19. Кнопка, рекомендуемая для устройств из этой книги, собранных на макетной плате
Реле
Поскольку производители не стандартизировали функции выводов реле, то при его покупке вы должны предусмотреть возможность замены. Я рекомендую реле марки Omron G5V-2-H1-DC9, изображенное на рис. 2.20, которое должно свести к минимуму путаницу, поскольку функции выводов четко указаны на корпусе.
Компания Omron — крупный производитель реле, и я надеюсь, что та модель, которую я рекомендую, еще будет выпускаться какое-то время. Вы можете также выбрать реле типа Axicom V23105-A5006-A201 или Fujitsu RY-9W-K. Все они рассчитаны на постоянное напряжение 9 В и представляют собой двухполюсные реле на два направления с выводами, расположенными как показано на рис. 2.21 слева. Если расстояние указано в миллиметрах, то значения 5 мм или 5,08 мм подходят вместо 0,2-дюймового, а расстояния в 7,5 или 7,62 мм могут заменить 0,3-дюймовое.
Если функциональная схема нанесена на корпус реле, она должна выглядеть так, как на рис. 2.21 справа. В технических паспортах реле почти всегда есть эта информация. Подойдут реле и с другими функциями выводов, но работать с ними вам будет сложнее, поскольку возникнут отличия от схем, приведенных мною.
Рекомендованные реле обладают высокой чувствительностью, и следовательно, они потребляют меньший ток. Вы можете заменить их другими, но они будут потреблять больше электроэнергии. Какое бы реле вы ни выбрали, оно должно иметь напряжение срабатывания, равное 9 В, а расстояния между выводами должны соответствовать указанным на рис. 2.21.
Рис. 2.20. Реле, рекомендуемое для экспериментов, описанных в этой книге
Рис. 2.21. Рекомендуемое расположение выводов и цоколевка реле
При покупке реле следует обратить внимание на их полярность, т. е. необходимость подавать ток в указанном направлении, потому что реле не будет работать, если ток протекает через его обмотку в противоположном направлении. Рекомендованные мною реле не требуют соблюдения полярности. Для многих реле Panasonic необходимо соблюдать полярность, поэтому внимательно прочтите технический паспорт, прежде чем купить какое-либо из них. И наконец, все реле, которые понадобятся для наших экспериментов, должны быть без блокировки.
Если все сказанное пока сложно и непонятно для вас, можете отложить покупку реле до ознакомления с описанием эксперимента 7, в котором подробно разъясняется функционирование реле. Чтобы провести этот эксперимент полностью, вам понадобятся два реле.
Подстроечный потенциометр
Вместо громоздкого потенциометра, который вы использовали в эксперименте 4, теперь нам понадобится подстроечный потенциометр, который меньше по размерам, дешевле и легко устанавливается на макетную плату. Примеры подобных компонентов (с различными номиналами, выбранными наудачу) показаны на рис. 2.22.
Подстроечные потенциометры, показанные слева и справа на рис. 2.22, выбраны для экспериментов из этой книги. При установке они будут вплотную примыкать к макетной плате, а их выводы окажутся надежно зафиксированы в отверстиях. Единственное различие между этими двумя образцами в том, что один немного больше, чем другой. Существуют потенциометры, устанавливаемые под углом 90 градусов к макетной плате, но они менее удобны для работы.
В центре на рис. 2.22 изображен многооборотный подстроечный потенциометр, который обеспечивает более точную настройку с помощью латунного винта, соединенного с внутренней червячной передачей. Этот компонент менее удобен, дороже и не обязателен для наших целей, т. к. вам не потребуется слишком большая точность.
Рис. 2.22. Подстроечные потенциометры
Транзисторы
В этой книге используются транзисторы одного типа. Основной номер серии — 2N2222, но, к сожалению, не все транзисторы марки 2N2222 одинаковы.
Если вы приобрели готовый набор компонентов, то проблем не должно возникнуть. Если вы делаете закупки самостоятельно, то старайтесь избегать компонентов, у которых обозначение P2N предшествует номеру 2222. Когда появилась марка P2N2222, производители изменили цоколевку выводов по сравнению с предыдущими транзисторами 2N2222, которые многие годы оставались стандартными. (Зачем они это сделали? Не знаю.)
При выборе транзистора руководствуйтесь следующими правилами:
• транзисторы с обозначениями 2N2222, PN2222 или PN2222A подходят. Обозначение PN2222 стало более распространенным, чем 2N2222, но годятся обе модели;
• транзисторы с обозначениями P2N2222 или P2N2222A не подходят.
Ловушка в том, что когда вы ищете модель 2N2222, вам будет предлагаться модель P2N2222, потому что поисковые системы будут пытаться помочь вам, показывая компоненты, которые имеют дополнительные буквы, предшествующие номеру. Мой совет — покупайте внимательно. И если у вас есть мультиметр, который тестирует транзисторы, проверьте каждый. Если цоколевка выводов транзистора стандартная, мультиметр должен показать коэффициент усиления более 200. Если у вас транзистор не того типа, то мультиметр покажет ошибку или значение усиления ниже 50.
Рис. 2.23. Два транзистора 2N2222, Любой из них подойдет для экспериментов
Транзисторы 2N2222 когда-то выпускались в корпусе в виде маленьких металлических «баночек». Сейчас они почти всегда заключены в черный пластиковый корпус. Оба варианта показаны на рис. 2.23. Транзистор в любом корпусе — пластиковом или металлическом — работает одинаково хорошо, если только маркировка не начинается с P2N.
Конденсаторы
Конденсаторы не так дешевы, как резисторы, но все же достаточно доступны, чтобы приобрести их небольшим оптом. Далее нам чаще всего потребуются конденсаторы с номиналами в диапазоне, измеряемом в микрофарадах (сокращенно мкФ). Я подробно объясню это, когда мы начнем использовать конденсаторы в схемах.
Для небольших номиналов рекомендуются керамические конденсаторы. Среди конденсаторов большой емкости самыми дешевыми будут электролитические. Дополнительные указания по их покупке смотрите в разделе «Компоненты» главы 6. Примеры различных конденсаторов приведены на рис. 2.24. Компоненты в цилиндрическом корпусе являются электролитическими конденсаторами, а все остальные — керамическими.
Рис. 2.24. Различные конденсаторы
Резисторы
Если вы покупаете компоненты самостоятельно, я рассчитываю на то, что вы уже приобрели хорошую подборку резисторов, о которых я говорил в эксперименте 1.
Динамик
Рис. 2.25. Два динамика, один размером 2,5 см, а другой — 5 см
Минимальный диаметр динамика — 2,5 см, хороший вариант — 5 см. Максимум — это 7,5 см. Импеданс должен быть не менее 8 Ом.
Мы не будем работать с высококачественным воспроизведением звука, поэтому подойдет любой дешевый динамик. Пара примеров показана на рис. 2.25.
Что-то еще?
Прочитав все предыдущее, вы, наверное, подумаете, что я перечислил очень много компонентов. Будьте спокойны: почти все указанные компоненты можно использовать неоднократно, и вам не потребуется много дополнительных деталей для остальных глав книги.