Книга: Электроника для начинающих (2-е издание)
Назад: Эксперимент 3. Ваша первая электрическая цепь
Дальше: Эксперимент 5. Давайте изготовим гальванический элемент

Эксперимент 4. Переменное сопротивление

Изменять сопротивление в цепи можно с помощью потенциометра. Этот компонент поможет точно выставить силу тока. Поэкспериментировав с потенциометром вы лучше поймете взаимосвязь между напряжением и силой тока. Вы также научитесь читать технический паспорт, поставляемый производителем.

Что вам понадобится

• Батарея 9 В (1 шт.)
• Резисторы: 470 Ом (1 шт.) и 1 кОм (1 шт.)
• Стандартные светодиоды (2 шт.)
• Тестовые провода с зажимами «крокодил» на каждом конце (4 шт.)
• Потенциометр на 1 кОм, линейный (2 шт.)
• Мультиметр (1 шт.)

Как устроен потенциометр

Для начала мне хотелось бы, чтобы вы поняли, как устроен потенциометр, и самый лучший способ это сделать — разобрать его корпус. Вот почему я попросил вас подготовить два потенциометра для этого эксперимента — на тот случай, если вы не сможете снова собрать первый.
Некоторые читатели первого издания книги жаловались на то, что неразумно пытаться разобрать потенциометр, рискуя сломать его. Но почти в любом процессе обучения подразумевается расход каких-либо ресурсов, от ручек и бумаги до маркеров для доски. Если вы действительно не хотите рисковать вашим потенциометром, то можете оставить его в целости и сохранности и изучать конструкцию по приведенным далее фотографиям.
Рис. 1.44. Лапки, которые скрепляют потенциометр
Рис. 1.45. Лапки потенциометра отогнуты вверх и наружу
Рис. 1.46. Корпус потенциометра разобран (кружком выделен движок)
В большинстве потенциометров в качестве скрепляющих элементов используются металлические лапки. Вам нужно отогнуть эти лапки вверх. Первый способ это сделать — подсунуть нож и действовать им как рычагом. Второй способ — применить отвертку или какие-либо кусачки. Я не указал никаких инструментов для этого эксперимента, потому что надеюсь, что у вас в доме есть нож, отвертка или кусачки.
На рис. 1.44 три лапки обведены окружностями (четвертая лапка скрыта за осью компонента). На рис. 1.45 лапки отогнуты вверх и наружу.
После того, как вы отогнули лапки, очень аккуратно потяните за вал, придерживая корпус потенциометра другой рукой. Он должен отделиться, как показано на рис. 1.46.
Внутри корпуса вы увидите круговую дорожку. В зависимости от того, дешевый ли у вас потенциометр или же более высокого класса, дорожка может быть выполнена из проводящего пластика или из тонкого провода, намотанного в виде спирали, как показано на фотографии. В любом случае, принцип работы одинаковый. Провод или пластик обладают некоторым сопротивлением (в общей сложности 1000 Ом для потенциометра номиналом 1 кОм), по мере поворота оси движок соприкасается с резистивной частью и обеспечивает соединение любой точки и центрального вывода. На рис. 1.46 движок потенциометра обведен окружностью.
Возможно, вам удастся снова собрать потенциометр, но если это не получилось, возьмите запасной.

Исследование потенциометра

Настройте ваш мультиметр на измерение сопротивления (минимум 1 кОм на мультиметре с ручным выбором диапазона) и коснитесь щупами двух соседних контактов, как показано на рис. 1.47. Вы должны обнаружить, что при вращении вала потенциометра по часовой стрелке (если смотреть сверху) его сопротивление уменьшается почти до нуля. Когда вы вращаете вал против часовой стрелки, сопротивление увеличивается вплоть до 1 кОм. Теперь черный щуп оставьте на месте, а красным коснитесь противоположного контакта. Потенциометр будет вести себя наоборот.
Возможно, у вас появилось предположение, что центральный контакт соединен с движком внутри потенциометра, а другие два контакта подключены к концам дорожки. Ваша догадка правильна!
Если вы поменяете местами красный и черный щупы, то сопротивление между ними не изменится. Оно одинаково в обоих направлениях. В отличие от светодиода, который необходимо подключать, соблюдая полярность, потенциометр не имеет полярности.
Внимание!
Когда вы пытаетесь измерить сопротивление, не подключайте цепь к источнику питания. При измерении сопротивления мультиметр использует небольшое напряжение от внутренней батареи. Вы же не хотите, чтобы внешнее подаваемое напряжение противодействовало тому, которое поступает от мультиметра.
Рис. 1.47. Исследование поведения потенциометра

Уменьшение яркости светодиода

Теперь воспользуемся потенциометром для регулировки яркости светодиода. Соедините все в точности так, как показано на рис. 1.48. Убедитесь, что два зажима типа «крокодил» присоединены к указанным контактам. Теперь вы подключили переменное сопротивление (т. е. потенциометр) там, где в эксперименте 3 располагался обычный резистор (см. рис. 1.42).
Внимание!
Впереди эксперимент, требующий осторожности. Я много раз проводил описанный далее эксперимент без всяких происшествий, но один читатель сообщил, что его светодиод потрескался. Если вы желаете подстраховаться, можно надеть защитные очки. Обычные очки тоже подойдут.
Рис. 1.48. Регулировка яркости светодиода при помощи потенциометра
Начните с такого положения оси потенциометра, при котором она полностью повернута против часовой стрелки (если смотреть сверху), в противном случае вы сожжете светодиод, даже не приступив к эксперименту. Теперь очень медленно поворачивайте ось по часовой стрелке в направлении, показанном стрелкой. Вы заметите, что светодиод светит все ярче, ярче и ярче, пока... полностью не погаснет! Видите, как легко сломать современный электронный компонент? Посмотрев на заголовок «Уменьшение яркости светодиода», вы наверное не предполагали, что светодиод погаснет навсегда. Выбросьте этот испорченный светодиод. К сожалению, он больше никогда не будет светить.
Возьмите новый светодиод, только на этот раз мы защитим его. Добавьте в схему резистор с номиналом 470 Ом, как показано на рис. 1.49. Электрический ток теперь проходит через 470-омный резистор, а также через потенциометр, и поэтому светодиод будет защищен, даже если сопротивление потенциометра уменьшится до нуля. Вы можете спокойно перемещать движок потенциометра, не опасаясь что-либо испортить.
Рис. 1.49. Теперь светодиод в безопасности
Урок, который, я надеюсь, вы усвоили, состоит в том, что светодиод очень чувствителен и его нельзя подключать напрямую к 9-вольтовой батарее. Его всегда необходимо защищать каким-либо дополнительным резистором в цепи.
Не желаете ли подключить светодиод напрямую к 1,5-вольтовой батарейке? Попробуйте. Вы можете добиться тусклого свечения, но 1,5 вольта — ниже порогового напряжения для светодиода. Давайте выясним, какое напряжение необходимо светодиоду для нормальной работы.

Измерение разности потенциалов

Пока к цепи подключена батарея, установите поворотный переключатель вашего мультиметра на измерение постоянного напряжения в вольтах. Вы можете оставить красный щуп в том же гнезде, потому что гнездо для измерения напряжения и сопротивления одно и то же.
Если у вас мультиметр с ручным выбором диапазона, установите напряжение выше 9 В. Помните, число на шкале поворотного переключателя мультиметра — это максимальное значение для каждого диапазона.
Теперь прикоснитесь щупами к контактам потенциометра, как показано на рис. 1.50. Придерживая щупы, немного поверните вал потенциометра сначала в одну, а затем в другую сторону. Вы увидите соответствующее изменение напряжения. Мы называем это разностью потенциалов между двумя щупами.
Замечание
Термин «разность потенциалов» означает то же, что и напряжение между двумя точками.
Если измерить потенциал на самом светодиоде, он будет также меняться, когда вы регулируете потенциометр, хотя и не настолько, как можно было бы ожидать. В некоторой степени светодиод подстраивается сам, меняя свое сопротивление в зависимости от колебаний напряжения и силы тока.
Что произойдет, если вы поменяете местами красный и черный щупы? На дисплее мультиметра должен появиться знак минус. Вы не сломаете мультиметр таким способом, но будет правильнее, если всегда измерять положительное напряжение красным щупом, а не черным.
И наконец, прикоснитесь щупами к выводам постоянного резистора, разность потенциалов снова изменится при регулировании потенциометра. Как видим, напряжение от батареи распределяется между всеми компонентами этой простой схемы. Когда падение напряжения на потенциометре уменьшается, на долю постоянного резистора и светодиода приходится более высокая разность потенциалов. Кроме того, когда сопротивление потенциометра падает, общее сопротивление в цепи также уменьшается, что увеличивает силу тока.
Рис. 1.50. Измерение разности потенциалов в схеме со светодиодом
Запомните следующие моменты:
• Сумма падений напряжения на всех компонентах последовательной цепи равна напряжению питающей батареи.
• Вы измеряете относительное напряжение между двумя точками цепи. Именно эта величина и называется разностью потенциалов.
• При измерении напряжения подносите ваш мультиметр как стетоскоп, не нарушая соединений и не разрывая цепь.

Измерение силы тока

Теперь мне хотелось бы, чтобы вы провели другой эксперимент. Узнайте силу тока в цепи с помощью мультиметра, настроенного на мА (миллиамперы). При измерении силы тока вы должны соблюдать следующие правила:
• Измерять силу тока можно только тогда, когда он проходит через мультиметр.
• Мультиметр включается в разрыв цепи последовательно.
• Слишком сильный ток может сжечь плавкий предохранитель внутри мультиметра.
• Щуп следует вставить в гнездо мультиметра, обозначенное как «мА». Это может быть то же гнездо, которое вы использовали до сих пор, или другое.
Прежде чем начать опыт, убедитесь, что установили поворотный переключатель в положение для измерения силы тока, а не напряжения.

Перегрузка мультиметра

Соблюдайте осторожность при измерении силы тока. Например, если вы присоединили щупы мультиметра непосредственно к клеммам батареи, а мультиметр настроен на измерение тока в миллиамперах, то вы создадите моментальную перегрузку, и в мультиметре перегорит плавкий предохранитель. Дешевые устройства не имеют каких-либо запасных предохранителей, поэтому вам придется вскрыть корпус, выяснить номинал предохранителя и найти где-либо точно такой же на замену. Это порядком раздражает (я сам проходил через это, и не раз). У очень дешевых мультиметров может оказаться предохранитель, который заменить не так легко.
Рис. 1.51. Ток проходит через мультиметр и далее по цепи
Совет
Всегда измеряйте силу тока, когда в цепи есть компоненты, которые ограничивают ток. В качестве меры предосторожности, если ваш мультиметр имеет отдельное гнездо для измерения силы тока, вставляйте в него красный провод только на время измерения. Затем верните красный провод обратно в гнездо для измерения напряжения/сопротивления.

Регулировка силы тока

Включите мультиметр последовательно в цепь между светодиодом и потенциометром, как показано на рис. 1.51. Регулируя потенциометр в обе стороны, вы обнаружите, что переменное сопротивление в цепи изменяет поток  электричества — силу тока. В предыдущем эксперименте светодиод сгорел, потому что слишком сильный ток нагрел его и расплавил изнутри, совсем как предохранитель. Более высокое сопротивление ограничивает силу тока.
Рис. 1.52. Сила тока, проходящего по простой цепи, всегда постоянна на всем ее протяжении, независимо от того, в каком месте вы ее измеряете
А теперь интересное исследование. Поверните движок потенциометра против часовой стрелки до упора. Запишите силу тока, которую показывает мультиметр.
Не меняя настройки потенциометра, поместите мультиметр в цепь между батареей и светодиодом, как показано на рис. 1.52. Какая сила тока теперь? Она должна быть такой же или почти такой же, как раньше, допустимы незначительные расхождения в сопротивлении в результате перемещения зажимов «крокодил».
Замечание
Сила тока постоянна во всех точках простой последовательной цепи. Так и должно быть, потому что потоку электронов больше некуда деться.

Проведение измерений

Пришло время подкрепить эксперименты некоторыми цифрами. Это позволит вам установить самое главное правило для всей электроники.
Удалите светодиод из схемы, включите мультиметр между батареей и потенциометром. Удалите 470-омный резистор и подключите резистор номиналом 1 кОм (с полосками коричневого, черного и красного цвета), как показано на рис. 1.53. Теперь сопротивление в цепи обеспечивают только потенциометр номиналом 1 кОм и постоянный резистор 1 кОм.
Замечание
Мультиметр также обладает некоторым сопротивлением, но оно настолько мало, что мы можем его не учитывать. Провода и зажимы «крокодил» также имеют незначительное сопротивление, но оно даже меньше, чем у мультиметра.
Поверните потенциометр по часовой стрелке до упора, обеспечив таким образом почти нулевое сопротивление. В цепи у вас сейчас только 1000 Ом от постоянного резистора. Какую силу тока показывает ваш мультиметр?
Установите движок потенциометра в среднее положение, чтобы его сопротивление составляло около 500 Ом. Общее сопротивление цепи теперь приблизительно 1500 Ом. Какую силу тока показывает ваш мультиметр сейчас?
Поверните ось потенциометра против часовой стрелки до упора, чтобы его полный номинал плюс номинал резистора в сумме давали 2000 Ом. Какая сила тока сейчас?
Когда я пытался это сделать, у меня получились такие результаты:
9 мА при общем сопротивлении 1 кОм
6 мА при общем сопротивлении 1,5 кОм
4,5 мА при общем сопротивлении 2 кОм
У вас должны быть примерно такие же значения.
Рис. 1.53. В этом последнем эксперименте нет даже светодиода
Заметили кое-что интересное? В каждой строчке, если вы умножите число слева на число справа, в результате получится 9. И напряжение батареи составляет в точности 9 вольт. Мы провели только три измерения, но если вы проведете ряд экспериментов с помощью набора постоянных резисторов, держу пари, результат будет таким же.
Можно резюмировать все это так:
Напряжение батареи в вольтах = миллиамперы × килоомы
Но, погодите-ка, 1 кОм — это 1000 Ом, а 1 мА — это 1/1000 ампера. В результате, если задать основные единицы измерения (вольты, амперы и омы), наша формула должна выглядеть так:
Напряжение в вольтах = (амперы / 1000) × (омы × 1000)
Здесь символ /, который часто называют словом «слеш», означает операцию деления.
Два коэффициента 1000 взаимно сокращаются, и поэтому мы получаем:
вольты = амперы × омы
Данное равенство называется законом Ома. Этот закон основополагающий для электротехники.

Закон Ома

Общепринятый способ записи закона Ома таков:
напряжение = сила тока × сопротивление
Обычно его сокращают так:
V = I × R
Буква I обозначает поток электричества, потому что первоначально сила тока измерялась по его индуктивности, т. е. по способности создавать магнитный эффект. Возможно, было бы понятнее обозначать силу тока какой-либо другой буквой, например С, но сейчас уже слишком поздно убеждать кого-либо в этом. Просто запомните, что буква I обозначает силу тока.
Меняя обозначения местами, вы получите следующие формулы:
I = V / R
R = V / I
Чтобы применять эти формулы, вы должны убедиться в том, что значения приведены в соответствующих единицах. Если напряжение (V) измерено в вольтах, сила тока (I) в амперах, то сопротивление (R) должно быть измерено в омах.
А что если вы измерили силу тока в миллиамперах? Вы должны выразить ее в амперах. Например, сила тока в 30 мА должна быть представлена в формуле как 0,03, потому что 0,03 А = 30 мА. Если вы путаетесь, используйте калькулятор, чтобы разделить величину в миллиамперах на 1000 и получить значение в амперах. Подобным же образом разделите значение в милливольтах на 1000, чтобы получить величину в вольтах.
Чтобы уменьшить вероятность ошибок, можно запомнить закон Ома, сформулированный в основных единицах:
вольты = амперы × омы
амперы = вольты / омы
омы = вольты / амперы
Замечание
Не забывайте, что вольты измеряются как разность потенциалов между двумя точками в простой цепи. Омы — это сопротивление между этими же двумя точками. Амперы — это сила тока, протекающего по всей цепи.

Последовательное и параллельное подключение

В предыдущей схеме резистор и потенциометр были подключены последовательно, и это означает, что электрический ток сначала проходит через один компонент, а затем через другой. Также их можно соединить «бок о бок», или параллельно.
Замечание
При последовательном соединении резисторы следуют один за другим. При параллельном соединении резисторы располагаются «бок о бок».
Если вы соединяете два одинаковых резистора последовательно, то удваиваете общее сопротивление, т. к. электричество должно преодолевать два барьера поочередно (рис. 1.54).
Когда вы соединяете два одинаковых резистора параллельно, то уменьшаете общее сопротивление пополам, т. к. создаете два пути с равным сопротивлением вместо одного (рис. 1.55).
На обоих рисунках сила тока в миллиамперах была вычислена с помощью закона Ома.
Рис. 1.54. Два резистора с одинаковым номиналом соединены последовательно
В реальности у нас нет необходимости соединять резисторы параллельно, но мы часто подключаем параллельно другие компоненты. Все лампочки в вашем доме, например, подключены параллельно к основному источнику питания. Важно понять, что при параллельном соединении компонентов суммарное сопротивление цепи снижается. В то же время, если вы добавляете больше путей для электрического тока, общая сила тока в цепи увеличивается.

Применение закона Ома

Закон Ома исключительно полезен. Например, он поможет точно рассчитать, какое последовательное сопротивление нужно добавить к светодиоду, чтобы защитить его и вместе с тем обеспечить максимум яркости.
Первый этап — ознакомиться с характеристиками светодиода, предоставленными производителем. Эта информация легко доступна в паспорте изделия, который вы можете найти онлайн. Предположим, у вас есть светодиод, выпущенный компанией Vishay Semiconductors. Вы знаете номер модели, TLHR5400, т. к. он был напечатан на ярлыке, когда вы получали набор светодиодов по почте, и вы отрезали ярлык и храните его вместе со светодиодами. (Рекомендую всегда делать именно так.)
Рис. 1.55. Два резистора с одинаковым номиналом соединены параллельно
Все, что вам необходимо сделать — это ввести в поле поиска на сайте Google марку компонента и название компании-производителя:
vishay tlhr5400
Давайте продолжим работу со светодиодом Vishay. Теперь вы знаете, что он хорошо работает при напряжении 2 В и токе в 20 мА, закон Ома подскажет вам остальное.
Самый первый результат — это паспорт изделия, предлагаемого компанией Vishay. Прокрутите страницу, и вы увидите информацию, которая вам необходима. Фрагмент снимка экрана показан на рис. 1.56. Рамкой выделены: номер модели (слева) и два вида прямого напряжения (справа). «ТУР.» означает «обычное», а «МАХ.» — «максимальное». Таким образом, светодиод должен работать при разности потенциалов 2 В. Но что означает столбец «at IF (mA)»? Вспомните, что буква I служит для обозначения силы тока в цепи. Буква «F» означает «Forward» — «прямой». Таким образом, прямое напряжение в таблице измеряется при прямом токе 20 мА, что является рекомендуемым значением для этого светодиода.
А если у вас светодиод Kingbright WP7113SGC? На этот раз второй результат поиска Google приведет вас к соответствующему паспорту изделия, в котором на второй странице указано типичное прямое напряжение 2,2 В, максимальное 2,5 В, а максимальный прямой ток составляет 25 мА. Структура паспорта компонентов Kingbright отличается от паспорта Vishay, но информацию по-прежнему легко найти.
Рис. 1.56. Снимок экрана с техническим паспортом светодиода

Как подобрать резистор?

Для простой схемы, показанной на рис. 1.57, вам следует определить правильный номинал резистора.
Начнем с повторения правила, которое я приводил ранее:
• Если вы определяете разность потенциалов для всех устройств в цепи, общее значение останется таким же, как напряжение батареи питания.
Рис. 1.57. Эта простая схема позволяет вам вычислить номинал резистора
Батарея обеспечивает напряжение 9 В, из которых 2 В необходимо светодиоду. Поэтому резистор должен понижать напряжение на 7 В. А что насчет силы тока? Вспомните другое известное вам правило:
• Сила тока в простой цепи одинакова в любой ее точке.
Поэтому сила тока через резистор будет такой же, как сила тока через светодиод. Ваша цель — 20 мА, но закон Ома требует приведения всех единиц к соответствию. Если вы работаете с вольтами и омами, вы должны выразить силу тока в амперах. 20 мА составляют 20/1000 ампер, что равно 0,02 ампера.
Теперь вы можете записать то, что вам известно:
V = 7
I = 0,02
Какой вариант формулы закона Ома необходимо использовать? Тот, в котором искомый параметр находится слева:
R = V / I
Теперь подставим значения V и I в формулу:
R = 7 / 0,02
Для расчетов с десятичным разделителем существует прием, о котором я расскажу, но чтобы сэкономить время, получите ответ с помощью калькулятора:
7 / 0,02 = 350 Ом
Это нестандартный номинал резистора, но существует типовое значение 330 Ом. Кроме того, в том случае, если у вас более чувствительный светодиод, можно взять более высокий стандартный номинал — 470 Ом. Вы, вероятно, помните, что я выбрал резистор 470 Ом для эксперимента 3. Теперь вы знаете почему: я предварительно вычислил его номинал.
Некоторые люди совершают ошибку, полагая, что при делении значения напряжения на силу тока для определения подходящего номинала последовательного резистора они должны подставить величину напряжения питания (в данном случае 9 В). Это неправильно, потому что питающее напряжение подается и на резистор, и на светодиод. Чтобы найти требуемый номинал резистора, вы должны рассматривать разность потенциалов только на нем, а она равна 7 В.
Что произойдет, если вы возьмете другой источник питания? Далее в этой книге в ряде экспериментов вы будете использовать источник 5 В. Как это изменит соответствующий номинал резистора?
Напряжение на светодиоде по-прежнему составляет 2 В. Источник питания выдает 5 В, поэтому резистор должен понижать его на 3 В. Сила тока должна быть одинаковой, и тогда расчет выглядит так:
R = 3 / 0,02
Таким образом, номинал резистора составит 150 Ом. Но вовсе не обязательно, чтобы светодиод обеспечивал максимальную световую отдачу, а возможно даже, что у вас окажется светодиод, у которого предельный ток меньше 20 мА. Кроме того, если схема питается от автономного источника, то желательно уменьшить потребление энергии, чтобы батареи хватило на более долгое время. Учитывая это, вы можете выбрать более высокий стандартный номинал резистора — 220 Ом.

Нагрев проводов

Я уже упоминал, что провода имеют очень низкое сопротивление. Настолько ли оно мало, что его всегда можно игнорировать? Не совсем так. Если по проводу протекает большой ток, провод будет нагреваться, как вы сами могли это увидеть, когда замыкали 1,5-вольтовую батарею в эксперименте 2. И если провод становится горячим, вы можете быть уверены, что некоторое напряжение падает на самом проводе, в результате для любого подключенного устройства напряжение окажется меньше расчетного.
Опять-таки, чтобы провести расчеты, пригодится закон Ома.
Предположим, что очень длинный отрезок провода имеет сопротивление 0,2 Ом. Вы желаете пропустить через него ток в 15 А, чтобы запустить устройство, которое потребляет много энергии.
Начинаем с выписывания известных величин:
R = 0,2 (сопротивление провода)
I = 15 (сила тока в цепи)
Вам нужно найти падение напряжения между двумя концами провода (V). Поэтому следует выбрать тот вариант закона Ома, который содержит символ V слева:
V = I × R
Теперь подставим значения:
V = 15 × 0,2 = 3 В
Три вольта — несущественная величина, если у вас есть высоковольтный источник питания, но когда вы используете автомобильный аккумулятор на 12 В, такой отрезок провода будет потреблять четверть от имеющегося напряжения.
Теперь вы знаете, почему проводка в автомобилях выполнена довольно толстым кабелем — чтобы по возможности снизить падение напряжения.

Десятичные значения

Легендарный британский политик сэр Уинстон Черчилль известен своими жалобами на «эти проклятые запятые». Он имел в виду десятичные запятые. Поскольку на тот момент Черчилль был министром финансов Великобритании и контролировал все расходы страны, его трудности при работе с десятичными числами представляли некоторую проблему. Тем не менее, он справился с делами при помощи устоявшейся в Великобритании традиции. Вы тоже сможете.
Предположим, у вас есть дробь, содержащая десятичные числа. Вы можете упростить ее, если перенесете десятичные запятые в числителе и в знаменателе дроби на одинаковое количество разрядов. Так, если бы вы пожелали узнать результат деления 7/0,02, чтобы подобрать последовательный резистор для светодиода, то могли бы просто передвинуть запятые на два знака вправо:
7 / 0,02 = 700 / 2
Заметьте, что если вы передвигаете десятичную запятую за правую границу числа, то в каждый дополнительный разряд следует добавить ноль. Поэтому когда вы двигаете десятичную запятую в числе 7,0 на два знака вправо, то получаете 700.
А если у вас десятичные запятые при умножении чисел? Например, вам надо умножить 0,03 на 0,002. Поскольку сейчас вы умножаете, а не делите, следует переносить запятые в противоположных направлениях. Вот так:
0,03 × 0,002 = 3 × 0,00002
Результат равен 0,00006. Повторю еще раз, если для вас это слишком сложно, пользуйтесь калькулятором. Но иногда быстрее считать с помощью ручки и бумаги или даже вычислить все в уме.

Математика вашего языка

Я возвращаюсь к вопросу, который задавал в предыдущем эксперименте: почему ваш язык не стал горячим?
Теперь, когда вы знаете закон Ома, можно выразить ответ в числах. Давайте предположим, что батарея выдает заявленное напряжение 9 В, а ваш язык имеет сопротивление 50 кОм, т. е. 50 000 Ом. Как всегда, начнем с записи известных величин:
V = 9
R = 50 000
Вам нужно узнать силу тока, I, поэтому запишем формулу закона Ома так, чтобы этот параметр находится слева:
I = V / R
Подставляем числа:
I = 9 / 50 000 = 0,00018 А
Переместите десятичную запятую на три знака, чтобы перевести амперы в миллиамперы:
I = 0,18 мА
Это очень маленький ток и он не дает значительного количества тепла.
А что было, когда вы замкнули батарею? Какое количество тока нагрело провода? Допустим, провода имеют сопротивление ОД Ом (возможно, оно меньше, но давайте начнем с 0,1 в качестве предположения). Запишите известные значения:
V = 1,5 R = 0,1
И снова я пытаюсь вычислить I, силу тока, поэтому используется формула:
I = V / R
Подставим числа:
I = 1,5/0,1=15 А
Это почти в 100 000 раз больше тока, который мы пропускали через язык. В тонком проводе такой ток выделяет значительное количество тепла.
Комнатный обогреватель или крупные электроинструменты, такие как отрезной станок, могут потреблять ток 15 А. Возможно, вам интересно, действительно ли такая маленькая батарея типа АА смогла выдать такой большой ток. И ответ на это — я не уверен. Я не смог бы измерить силу тока своим мультиметром, потому что ток в 15 А сожжет предохранитель, даже если подключить щуп в гнездо с отметкой 10 А. Но я все же провел эксперимент с 10-амперным предохранителем вместо трехамперного, и он выжил.
Почему же так получилось? Закон Ома утверждает, что сила тока должна была составить 15 А, но по какой-то причине она оказалась меньше. Может быть, сопротивление провода у держателя батареи было на самом деле больше, чем 0,1 Ом? Нет, думаю, что, возможно, даже ниже. Так что же ограничивает силу тока ниже того значения, которое предсказывает закон Ома?
Ответ заключается в том, что все вокруг нас имеет какое-либо электрическое сопротивление, даже батарея. Всегда помните о том, что батарея — это активная часть цепи.
Помните, когда вы замкнули батарею, она стала горячей, так же, как и провода? Определенно, батарея имеет некоторое внутреннее сопротивление. Вы можете игнорировать его, когда работаете с малыми токами в миллиамперах, но при сильных токах батарея активно участвует в процессе.
Вот почему я предупредил вас о том, чтобы вы не использовали мощную батарею (и особенно автомобильный аккумулятор). Такие батареи имеют намного более низкое внутреннее сопротивление и пропускают намного больший ток, который может сгенерировать тепло, приводящее к взрыву. Автомобильный аккумулятор способен обеспечить ток в несколько сотен ампер при запуске стартера. Этого вполне достаточно, чтобы расплавить провода и вызвать ожоги.
В сущности, с помощью автомобильного аккумулятора можно выполнять сварку металла.
Литиевые аккумуляторы также имеют низкое внутреннее сопротивление, что делает их очень опасными при замыкании.
Внимание!
Опасность представляет не только высокое напряжение, но и слишком большой ток. Не забывайте это важное правило электробезопасности.

Единицы измерения мощности

Я до сих пор не упоминал о ваттах, единице измерения, которая знакома всем.
Ватт — это единица измерения мощности. Например, если какая-то сила приложена в течение определенного промежутка времени, то она совершает работу. Инженер мог бы сказать, что работа совершается тогда, когда человек, животное или машина толкает что-либо, чтобы преодолеть механическое сопротивление. Примерами могут служить автомобиль, который едет по горизонтальному участку дороги (преодолевая силу трения и сопротивление воздуха), или человек, поднимающийся по лестнице (преодолевая силу тяжести).
Когда один ватт мощности действует в течение одной секунды, совершенная работа равна одному джоулю, обычно она обозначается буквой J. Если через Р обозначить мощность, то:
J = Р × S
Вот обратная формула:
Р = J / S
Когда электроны проходят по цепи, они преодолевают некоторое сопротивление и поэтому совершают работу. В электротехнике определение ватта очень простое:
ватты = вольты × амперы
Если использовать привычные единицы и обозначить мощность в ваттах через W, то следующие три формулы будут равнозначны:
W = V × I (ватты = вольты × амперы)
V = W / I
I = W / V
Термины милливатты (мВт), киловатты (кВт) и мегаватты (МВт) широко используются в разных ситуациях. Мегаватты обычно относят к мощному оборудованию, например к генераторам на электростанциях. Старайтесь не путать строчную букву «м» в аббревиатуре мВт с прописной «М» в аббревиатуре МВт. Пересчет для единиц мощности приведен в табл. 1.5.
Таблица 1.5
Мощность старых ламп накаливания указывалась в ваттах. То же и для стереосистем. Ватт был назван в честь Джеймса Уатта, изобретателя парового двигателя. Кстати, ватты могут быть переведены в лошадиные силы, и наоборот.
Резисторы, как правило, рассчитаны на мощность 0,25, 0,5,1 Вт и выше. Для всех устройств, описываемых в этой книге, подойдут резисторы на 0,25 Вт. Откуда я это знаю?
Вернемся к первой цепи со светодиодом, которая питается от 9-вольтовой батареи. Помните, нам требовалось, чтобы резистор понижал напряжение на 7 В при силе тока в 20 мА. Какая мощность в ваттах пришлась бы на этот резистор?
Запишем известные величины:
V = 7 (разность потенциалов для резистора)
I = 20 мА = 0,02 А
Нужно найти параметр W, поэтому запишем формулу так:
W = V × I
Подставим числа:
W = 7 × 0,02 = 0,14 Вт
Вот какая мощность будет рассеиваться резистором.
Резистор, рассчитанный на 0,25 Вт, без проблем выдержит мощность 0,14 Вт. На самом деле здесь подошел бы резистор и на 0,125 Вт, но в последующих экспериментах нам могут понадобиться и более мощные резисторы (0,25 Вт), поэтому нет ничего страшного в выборе резистора, рассчитанного на более высокую мощность. Такие резисторы стоят немного дороже и чуть больше по размерам.

Происхождение единицы мощности

Джеймс Уатт, изображенный на рис. 1.58, родился в 1736 году в Шотландии и известен как изобретатель парового двигателя. При университете города Глазго он открыл небольшую мастерскую, где добивался идеальной эффективности конструкции с поршнем в цилиндре, приводимым в движение с помощью пара. Финансовые сложности и недостаточный на тот момент уровень обработки металла отсрочили практическое применение изобретения до 1776 года.
Рис. 1.58. Разработка паровой тяги Джеймсом Уаттом послужила основанием для промышленной революции. После смерти ученого в его честь назвали основную единицу мощности электричества
Невзирая на сложности с получением патентов (который в те времена мог быть выдан на основании акта Парламента), Уатт и его компаньоны в конечном итоге заработали на инновациях много денег. И хотя Уатт жил раньше первооткрывателей электричества, в 1889 году (70 лет спустя его смерти) его именем назвали основную единицу электрической мощности, которая является произведением силы тока (в амперах) на напряжение (в вольтах).

Повторное использование

Сгоревший светодиод можно выбросить. Все остальное пригодится повторно.
Назад: Эксперимент 3. Ваша первая электрическая цепь
Дальше: Эксперимент 5. Давайте изготовим гальванический элемент