Книга: Аналитическая культура
Назад: Глава 5. Анализ данных
Дальше: Глава 7. Сторителлинг на основе данных

ГЛАВА 6

Разработка показателей

Когда не знаешь, куда идешь, то, скорее всего, окажешься где-нибудь еще.

Йоги Берра

Считайте, что поддается подсчету, измеряйте, что поддается измерениям, а неизмеряемое делайте измеряемым.

Галилео Галилей

В компании с управлением на основе данных должна быть четкая стратегия, то есть направление развития бизнеса, а также конкретный набор основных показателей — ключевых показателей эффективности деятельности (KPI) — для отслеживания, в верном ли направлении и насколько успешно идет развитие бизнеса. Ответственность за достижение этих KPI ложится на бизнес-единицы или подразделения, где могут быть определены дополнительные KPI специально для этого подразделения. Это завершает набор операционных и диагностических показателей, на основе которых контролируется выполнение задач, программ, тестов и проектов, ведущих к выполнению KPI.

Учитывая сказанное, чрезвычайно важна качественная разработка показателей. Они выполняют такую же роль, как точный компас. Вряд ли вы захотите следовать стратегическому показателю, указывающему, что вы продвигаетесь в желаемом юго-восточном направлении, когда на самом деле вы идете на северо-восток, или операционному показателю, отражающему ежегодный рост конверсии на 5%, когда на самом деле никакого роста нет. Точно так же вы не захотите руководствоваться неверным диагностическим показателем, который не в состоянии как можно раньше проинформировать вас о том, что ваш сайт на грани краха. Показатели, кроме того, представляют собой результаты экспериментов и A/B тестов, которые при правильном подходе вносят весомый вклад в каузальный анализ, что, как мы обсуждали в предыдущей главе, может стать отличной основой для формулирования выводов и стратегий на основе данных. Эту идею удачно сформулировал Дэвид Скок:

Один из способов оценить работу компании — представить ее в виде автомата, выдающего определенный объем продукции, с рычагами, с помощью которых управленческая команда способна контролировать его работу. У слабой команды ограниченное понимание, как работает ее автомат и какие у нее есть рычаги влияния. Чем лучше управленческая команда, тем лучше она понимает схему работы автомата и то, как можно оптимизировать его работу (на какие рычаги нажать). При разработке показателей мы стремимся улучшить свое понимание автомата и схемы его работы. Качественно разработанные показатели будут способствовать повышению результативности работы на выходе.

В этой главе мы поговорим о разработке показателей. Начнем с общих вопросов, а затем перейдем к KPI. Однако мы лишь поверхностно обсудим вопрос выбора показателей, так как полноценная дискуссия выходит за рамки этой книги. Кроме того, этому важному этапу посвящен целый ряд убедительных концепций, таких как сбалансированная система показателей, всеобщее управление качеством (TQM), призма эффективности и концепция Tableau de Bord («Бортовое табло»).

Разработка показателей

При выборе или разработке показателей следует руководствоваться несколькими принципами. В идеальном мире показателям должны быть присущи несколько характеристик.

ПРОСТОТА

Разрабатывайте показатель, чтобы он был «таким простым, как только возможно, но не проще» (Эйнштейн).

Какое из этих определений будет понятнее вашим коллегам?

Клиент — человек, который отдает деньги и получает один из товаров компании.

Клиент — человек, купивший товар,

Надеюсь, вы уловили основную мысль.

Простые показатели, по определению, просто объяснить, это означает следующее:

Конечно, есть множество обоснованных причин, почему требуется добавить дополнительный бизнес-критерий или пограничный случай для создания более сложного показателя. Возможно, вам необходимо фильтровать источники, чтобы они не содержали необъективные или резко отличающиеся данные. Или вам может понадобиться показатель, по которому выделяется конкретная подгруппа данных, например те случаи обслуживания клиентов, которые стоили компании дороже всего.

Каждый случай следует рассматривать по существу, но постарайтесь избегать дополнительных сложностей с редкими пограничными случаями, которые не добавляют особой ценности для бизнеса и лучшего понимания этого показателя.

Вывод: не стоит чрезмерно усложнять показатели.

ЕДИНЫЙ СТАНДАРТ

По возможности руководствуйтесь общепринятыми стандартами. Например, имея единый, четко определенный показатель отказов, используйте его в своей деятельности, если только у вас нет веской причины для создания своего собственного варианта этого показателя. Если в розничной торговле проходимость торговой точки считается по количеству вышедших из магазина, используйте этот показатель, а не считайте количество вошедших, даже если эти показатели сопоставимы концептуально и по своим значениям. Например, при отслеживании ежемесячной активности пользователей Facebook включает в подсчет только тех, кто залогинился на сайте, в то время как Yelp включает и эту категорию и тех, кто использует гостевой доступ.

Применение общепринятых стандартов вызовет меньше непонимания, особенно у коллег, пришедших из других компаний. К тому же вам будет легче сравнивать свои показатели с показателями других компаний отрасли, то есть анализировать результаты своей работы относительно наиболее эффективных практик в отрасли.

Еще важнее, чтобы все показатели были стандартизированы в рамках одной компании. Мне доводилось наблюдать, как разные подразделения были уверены, что применяют один и тот же показатель, и даже описывали его в одинаковых терминах, но на практике реализация этого показателя в таблицах или системах этих подразделений значительно различалась. Их цифры не совпадали, что приводило к ожесточенным спорам.

Оптимальный вариант — иметь единый централизованный, автоматический, документально подтвержденный «источник истины», из которого бы черпали информацию разные подразделения. Тогда вы сможете использовать результаты анализа и выводы коллег в полной уверенности, что вы сравниваете подобное с подобным. В этом случае становится проще создать единое хранилище результатов аналитической работы и корпоративных знаний о причинных факторах в бизнесе (или о рынке), которому можно доверять и использовать.

Вывод: применяйте общепринятые показатели, если только у вас нет веских причин от них отклониться. При использовании нестандартных показателей зафиксируйте документально, как и почему они нестандартные.

ДОСТОВЕРНОСТЬ

Показатели должны быть достоверными. Это означает, что их среднее числовое значение должно быть приближено к истинному теоретическому среднему значению (см. рис. 6.1). Если использовать метафору стрельбы из лука, то стрела должна попасть точно в мишень.

Рис. 6.1. Точность (в стрельбе есть такой термин, как «кучность» — группировка точек падения снарядов на ограниченной площади) и достоверность (по аналогии со стрельбой это меткость попадания в мишень) на примере двухмерных данных. Недостоверный показатель необъективен, так как его среднее значение системно отличается от истинного среднего значения. Точность показателя отражает его вариативность: насколько будет отличаться среднее значение, если вы повторите эксперимент несколько раз и соберете новые выборки такого же размера

Возьмем, например, объем выручки от продаж на Amazon. Показатель среднего объема выручки за исключением суммы от продажи книг — неточное среднее значение совокупного объема выручки от всех продаж. Этот показатель необъективен. В  мы уже обсуждали примеры, когда отсутствующие данные приводили к искажению общей картины. Например, средний уровень удовлетворенности клиентов не отражает действительность, если недовольные клиенты из-за задержки доставки товара пропустили дедлайн по опросу и не предоставили свои ответы. В этом примере показатель степени удовлетворенности клиентов завышен по сравнению с его истинным более низким значением.

При разработке показателей постарайтесь учесть все потенциальные источники искажения, как в данных, так и в самом показателе. В  мы обсуждали некоторые источники необъективности при сборе данных. С точки зрения показателя подумайте обо всех возможных фильтрах при сборе данных, а также о любых скрытых или устаревших «поправочных коэффициентах».

Представьте себе стрелка, который готовится стрелять по дальней мишени и пользуется оптическим прицелом. При стрельбе следует учесть силу и направление ветра, влияющие на траекторию движения пули. Поэтому стрелок регулирует прицел — «поправочный коэффициент» — с поправкой на ветер. При этом если сила или направление ветра изменятся, то эта поправка окажется устаревшей, пули больше не попадут в цель. Внешние обстоятельства часто меняются, а потому необходимо внимательно следить за актуальностью действующих моделей и поправочных коэффициентов.

То же самое верно и в бизнесе. В Warby Parker мы используем электронные устройства для подсчета количества посетителей, вошедших и вышедших из наших розничных магазинов. Одно из возможных применений этих данных — для вычисления показателя конверсии торговой точки, то есть количества посетителей, зашедших в магазин и совершивших какую-нибудь покупку. В одном из таких магазинов персонал может попасть на склад с товаром и вернуться в торговый зал только через главный вход: эти передвижения точно так же считались электронными приборами, из-за чего показатель конверсии получался заниженным. Мы постарались исправить ситуацию, разработав статистическую модель, которая для конкретного дня недели и конкретного уровня занятости оценивала соотношение трафика персонала и посетителей магазина в качестве корректирующего фактора. В результате показатель конверсии стал гораздо более реалистичным. Следует учесть, что подобные модели могут терять свою актуальность при изменении внешних условий, например покупатели могут быть более мотивированы совершать покупки по выходным. Нужно либо периодически перенастраивать модель, либо, как мы пробуем делать сейчас, использовать более совершенные технологии, способные отличить персонал от посетителей и не включать сотрудников при подсчете трафика.

ТОЧНОСТЬ

Показатели должны отличаться точностью. Это означает, что при повторении эксперимента в тех же самых условиях значения должны получаться такими же. По аналогии со стрельбой это можно назвать кучностью: все попадания в мишень должны быть рядом на ограниченной площади. Один из инструментов, или рычагов, для контроля точности — размер выборки. Чем больше выборка, тем меньше стандартная ошибка. Однако эта взаимосвязь не линейная. Так как стандартная ошибка среднего значения равна стандартному отклонению, деленному на квадратный корень размера выборки, чтобы уменьшить стандартную ошибку в два раза, нужно в четыре раза увеличить размер выборки.

Сочетание достоверности (меткости попадания в мишень) и точности (кучности стрельбы) показано на . Если у вас нет подтвержденной справочной информации, вы можете не понять, что ваши показатели недостоверны. Однако вы, скорее всего, рано или поздно поймете, если ваши показатели не отличаются точностью (нестабильны).

Вывод: стремитесь к достоверности и точности показателей и учитывайте издержки и преимущества крупных выборок.

ОТНОСИТЕЛЬНЫЕ ИЛИ АБСОЛЮТНЫЕ ПОКАЗАТЕЛИ

Очень важное решение — относительные или абсолютные показатели следует применять. Этот выбор определяет разработку показателей, которые при одном сценарии показывают очень разные картины.

Представьте, что в какой-то компании ведется классификация клиентов и 25% от общего количества относятся к категории VIP (например, они приобрели продукцию компании на сумму больше 1 тыс. долл.). Через полгода у этой компании только 17% VIP-клиентов. Черт, что случилось? Они что, ушли? Как все исправить?

Предположим, что в этот период усилия компании были сосредоточены на привлечении новых клиентов. Тогда, вероятно, общее количество клиентов увеличилось (показано оранжевым на рис. 6.2), а количество VIP-клиентов могло остаться тем же, при этом их пропорция уменьшилась. Фактически вполне возможно даже, что количество VIP-клиентов тоже увеличилось, но при этом пропорция стала ниже.

Рис. 6.2. У компании 25% VIP-клиентов. В верхнем сценарии компания сосредоточила усилия на привлечении новых клиентов (показано оранжевым). Это привело к увеличению общего количества клиентов, количество VIP-клиентов осталось прежним, но пропорция уменьшилась. В нижнем сценарии компания сосредоточила усилия на работе с текущими клиентами. Пропорция и количество VIP-клиентов стали выше, но общего увеличения клиентской базы не произошло

И наоборот, предположим, что через полгода мы наблюдаем значительное увеличение количества VIP-клиентов и их пропорции. Это может отражать здоровый рост клиентской базы, но, с другой стороны, роста клиентской базы может и не быть, если усилия компании были сосредоточены исключительно на возвращении покупателей и увеличении количества повторных покупок (рис. 6.2, внизу). (Для многих компаний второй сценарий с увеличением количества повторных покупок более предпочтителен по сравнению с увеличением клиентской базы, так как стоимость привлечения новых клиентов, как правило, слишком высока.)

Как видите, выбор между применением абсолютных (количество VIP-клиентов) или относительных (их пропорция) показателей может привести к очень разным интерпретациям.

Вывод: тщательно взвесьте, что вы хотите узнать, и выберите абсолютный или относительный показатель, который будет адекватно отображать нужные вам изменения.

РОБАСТНОСТЬ

Определяйте статистически робастные показатели, то есть те, что относительно нечувствительны к отдельным резко отличающимся значениям.

Рассмотрим следующий пример из San Francisco Chronicle:

Средняя заработная плата специалистов технического профиля в центральной части полуострова Сан-Франциско (округ Сан-Матео) в прошлом году составила 291 497 долл. Возможное объяснение отклонения: глава компании Face­book Марк Цукерберг получил всего один доллар в качестве зарплаты, но заработал 3,3 млрд долл. на опционах на покупку акций в 2013 году. Если вычесть 3,3 млрд долл. из общей суммы, то среднее значение получится примерно 210 тыс. долл.

Использовать среднее значение в данном случае не следует, учитывая высокую степень позитивной асимметрии в данных по заработной плате. Среднее значение получается существенно завышенным (более чем на 35%) из-за одной резко отличающейся переменной. В данном случае гораздо рациональнее выбрать показатель медианы, так как он более устойчив к резко отличающимся значениям и лучше отражает средние данные.

Стоит отметить, что в некоторых случаях могут понадобиться показатели, которые особенно чувствительны к пограничным значениям. Пиковая нагрузка на веб-сайт должна охватывать редкие максимальные значения, которые должны быть включены в диапазон. Оценить или визуализировать робастность можно с помощью повторной выборки. Возьмите набор данных и вычислите показатель. Повторите расчеты несколько раз, заменяя набор данных; получив ряд значений показателя, составьте их распределение. Насколько это распределение отличается от того, что вы ожидали или хотели бы увидеть?

Вывод: примените разведочный анализ (например, постройте гисто­грамму или диаграмму рассеяния), чтобы лучше понять данные, и на его основании выберите робастные показатели.

ПРЯМАЯ СВЯЗЬ

Постарайтесь выбирать показатели, которые непосредственно измеряют интересующий вас процесс. К сожалению, не все можно измерить и оценить количественно, поэтому иногда приходится довольствоваться косвенными или приближенными показателями.

Кэти О’Нейл привела наглядный пример, как результаты тестов учеников приблизительно отражают качество обучения. Чем больше расстояние между самим процессом и приближенным показателем, тем менее достоверным и полезным будет его значение. В результате вы можете начать оптимизировать приближенный показатель, что может оказаться совсем не тем, что вы действительно хотите оптимизировать.

Сьюзан Веббер рассказала о тестировании вкусов кока-колы и о выпуске на рынок нью-кок в 1980 году. Компания провела маркетинговые исследования, которые показали в высшей степени положительные результаты, даже по сравнению с традиционной кока-колой. Однако когда новый продукт вывели на рынок, его продажи провалились. Почему­?

Покупатели сочли напиток слишком сладким. Дело в том, что при тестировании вкуса в ходе маркетинговых исследований участники фокус-группы пробовали напиток маленькими глотками, в результате чего степень его сладости не так раздражала. Если бы они пробовали напиток «как в жизни» (сделали бы большой глоток жарким днем), то оптимизировали бы свое восприятие в соответствии с действитель­ностью.

Вывод: везде, где возможно, оснащайте свои процессы и системы контрольно-измерительными средствами и старайтесь максимально избегать приближенных показателей. Не всегда стоит идти по пути наименьшего сопротивления и использовать данные, оказавшиеся под рукой. Сконцентрируйтесь на данных, которые вам следовало бы собрать и использовать, если они в большей степени отвечают вашим потребностям.

Ключевые показатели эффективности

Ключевые показатели эффективности (KPI) представляют собой набор значений самого высокого уровня, связанных со стратегическими целями компании. Они помогают определить и отследить направление, в котором развивается бизнес, и позволяют достигать намеченных целей. Как уже было сказано, эти показатели обеспечивают кораблю движение верным курсом.

Авинаш Кошик, ведущий мировой эксперт в области веб-аналитики, называет KPI «показателями, которые помогают понять, насколько эффективно вы действуете относительно своих целей».

Он подчеркивает два краеугольных камня этого определения — показатели и цели, — так как KPI связывают их воедино. Примеры KPI: «Повысить узнаваемость бренда на 10%», «Удвоить количество активных пользователей к концу года», «Увеличить онлайн-конверсию на 5% во втором квартале».

Для KPI критически важны перечисленные ниже аспекты.

KPI должны быть четко определены

Не должно быть никакой двусмысленности в понимании основных показателей, к которым стремится компания. Показатель следует четко определить, у него должно быть конкретное целевое значение и обозначенный или стандартный срок (обычно конец года).

KPI должны быть измеряемыми

Ключевые показатели эффективности должны иметь числовое значение. Вам необходима возможность измерить прогресс в количественном выражении за определенный период времени. Иными словами, это должна быть иголка, которую можно передвигать с места на место, а не двоичное значение. Главный специалист США по анализу данных (US Chief Data Scientist) Ди Джей Патиль в своей книге Building Data Science Teams отметил: «Как оказалось, все компании, в которых на высшем уровне развито управление на основе данных, придерживаются одного правила: если что-то нельзя измерить, это невозможно исправить».

KPI должны содержать цели

«Повысить выручку» — это плохо сформулированный ключевой показатель эффективности, так как в нем нет цели в числовом выражении. Если выручка компании повысится на 5 долл., сотрудники заявят, что задача выполнена, и прекратят прилагать усилия. И наоборот, если цель очевидно завышена и нереалистична, например «повысить выручку на 5000%», ее никто не воспримет всерьез или сотрудники вскоре сдадутся, и будь что будет. Показатели должны быть достижимыми, но при определенных усилиях.

KPI должны быть прозрачными

По крайней мере для тех, кто отвечает за их выполнение, а лучше и для всех остальных. Сотрудники должны получать обратную связь и четко понимать, приносят ли их усилия результаты или им лучше что-то изменить в своей деятельности. Стратегические показатели и ключевые показатели эффективности в компании Warby Parker доводятся до сведения всех сотрудников и регулярно (хотя бы раз в квартал) обсуждаются со всем персоналом во время общих собраний рабочего коллектива.

KPI должны отражать цели, которых хочет добиться компания

Легко попасться в ловушку и начать отслеживать то, что легко измерить, например время ответа на телефонные звонки в центре обслуживания клиентов, когда истинная цель может заключаться в том, чтобы повысить степень удовлетворенности клиентов. Как гласит афоризм, «мы придаем важность тому, что способны измерить». Для этого могут потребоваться новые процессы сбора данных и оценки эффективности. Проводите дополнительную работу и меняйте то, что вы действительно стремитесь изменить.

Как и цели, KPI должны соответствовать критериям SMART и быть:

Возможно, они должны быть даже SMARTER за счет добавления еще двух критериев: «подвергаться оценке» (Evaluated) и «подвергаться обзору/вознаграждаться» (Reviewed/Rewarded).

ПРИМЕРЫ КЛЮЧЕВЫХ ПОКАЗАТЕЛЕЙ ЭФФЕКТИВНОСТИ

Бернард Марр выделил 75 общих ключевых показателей эффективности. Они включают такие области, как финансовая деятельность и понимание клиентов (табл. 6.1).

Таблица 6.1. Набор стандартных KPI для бизнеса по версии Бернарда Марра

Фи­нан­со­вая де­я­тель­ность

По­ни­ма­ние по­ку­па­те­лей

Чи­стая при­быль

Ко­эф­фи­ци­ент до­ход­но­сти

Ко­эф­фи­ци­ент ва­ло­вой при­бы­ли

Чи­стая при­быль от ос­нов­ной де­я­тель­но­сти

При­быль до упла­ты на­ло­гов, про­цен­тов, из­но­са и амор­ти­за­ции (EBITDA)

Рост вы­руч­ки

Со­во­куп­ная при­быль ак­ци­о­не­ров (TSR)

До­бав­лен­ная эко­но­ми­че­ская сто­и­мость (EVA)

ROI

Рен­та­бель­ность при­вле­чен­но­го ка­пи­та­ла (ROCE)

Ко­эф­фи­ци­ент рен­та­бель­но­сти ак­ти­вов (ROA)

Рен­та­бель­ность соб­ствен­но­го ка­пи­та­ла (ROE)

Со­от­но­ше­ние соб­ствен­ных и за­ем­ных средств

Цикл об­ра­ще­ния де­неж­ных средств (CCC)

Ко­эф­фи­ци­ент обо­рот­но­го ка­пи­та­ла

Ко­эф­фи­ци­ент опе­ра­ци­он­ных рас­хо­дов (OER)

Со­от­но­ше­ние ка­пи­таль­ных за­трат и объ­е­ма про­даж

Ко­эф­фи­ци­ент цен­но­сти ак­ции (P/E ratio)

Ин­декс по­тре­би­тель­ской ло­яль­но­сти (NPS)

Ко­эф­фи­ци­ент удер­жа­ния кли­ен­тов

Ин­декс удо­вле­тво­рен­но­сти по­тре­би­те­лей

По­ка­за­тель до­ход­но­сти кли­ен­та

По­жиз­нен­ная цен­ность кли­ен­та (CLV)

По­ка­за­тель воз­вра­ща­е­мо­сти кли­ен­тов

Во­вле­чен­ность кли­ен­тов

Жа­ло­бы кли­ен­тов

Тем не менее каждая компания должна выбрать и скорректировать под себя собственный набор KPI, учитывающий область деятельности, конкретную бизнес-модель, этап жизненного цикла компании и ее особые цели и задачи. Например, стратегические показатели и KPI компании Warby Parker практически не пересекаются с перечисленными в списке Марра. Со списком все в порядке, он охватывает большинство стандартных бизнесов и их потребностей, просто он не учитывает, что каждая компания уникальна.

У компании Warby Parker серьезная социальная миссия: на каждую проданную пару очков мы отдаем пару очков тем, кто в них нуждается. Поэтому неудивительно, что наши стратегические цели и KPI связаны с благотворительной программой Do Good, потому что именно на ее дальнейшем продвижении мы хотим сконцентрироваться. Мы разрабатываем и производим собственные модели очков, так что у нас есть KPI, ориентированные на улучшение этого направления бизнеса.

Основная мысль, которую я хочу до вас донести, в том, что нет и не может быть единого готового набора KPI для всех без исключения. Для их разработки топ-менеджмент компании должен тщательно обдумать, в каком направлении она должна развиваться, а для их выполнения всему персоналу компании следует прилагать серьезные усилия на протяжении следующего года.

Система сбалансированных показателей, предложенная Р. Капланом и Д. Нортоном, пытается обеспечить, чтобы набор KPI давал целостную картину деятельности компании в четырех областях: финансовой, в работе с клиентами, во внутренних бизнес-процессах, а также в обучении и развитии. Они сравнили управление компанией с управлением самолетом. Чтобы поднять самолет в воздух и долететь до пункта назначения, пилоту нужно одновременно контролировать запас топлива, скорость полета, координаты маршрута, внешние условия и так далее. Невозможно в одном полете сосредоточиться исключительно на уровне топлива, а в следующем полете думать только о координатах маршрута. Все эти компоненты нужно рассматривать как единую стратегию.

Если вы зайдете в кабину пилота, то увидите десятки, если не сотни, датчиков, измерительных приборов и рычагов. Однако на самом деле пилот и второй пилот в штатных ситуациях, как правило, отслеживают лишь небольшой набор самых главных показателей. (Если бы вам, как мне, довелось управлять безмоторным самолетом, вы бы довольно быстро уловили, какой минимум приборов действительно необходим: альтиметр, компас, указатель скорости полета и указатель скорости набора высоты (вариометр). Все!) Компас важен. Свет на бортовой кухне важен не настолько. Вы увидите множество сигнальных ламп на панелях управления. Конечно, пилот отреагирует, если какая-то из них загорится, но в штатном режиме он может просто о них забыть. Иными словами, в компании действительно должны быть инструменты для отслеживания сотен или тысяч операционных и диагностических показателей, но сам процесс отслеживания может быть делегирован на уровень операционной деятельности. Эти панели и показатели могут быть локализованы под отдельные бизнес-подразделения или команды, но с ключевыми показателями эффективности все по-другому: этот небольшой набор показателей должен быть понятен для всех.

Итак, сколько ключевых показателей эффективности у вас должно быть?

СКОЛЬКО KPI ДОЛЖНО БЫТЬ?

KPI должны охватывать все основные области бизнеса и те аспекты, которым уделяется особое стратегическое внимание в этом временном периоде, обычно в течение года. В компании может быть четыре-пять основных направлений или заинтересованных групп, которые могут, но не должны, совпадать с топ-менеджментом компании. Например, это может быть финансовое направление, за которое отвечает коммерческий директор, или стратегические технологические цели под управлением технического директора и команды его специалистов и так далее.

Роберт Шампейн полагает, что по каждому из этих направлений могут быть две-пять стратегических целей, каждая из которых может быть связана с одним-тремя KPI. При этом лучше, если общее число KPI будет в более низких значениях, рассчитанных по формуле: 5 × (2–5) × (1–3) продуктов. Он называет максимальное их количество от 20 до 30. Один из читателей ответил ему в комментариях, что «20 — это уже много». Каплан и Нортон предлагают 16–25 показателей.

Если у вас слишком много ключевых показателей эффективности, у сотрудников компании будет рассеян фокус внимания, они будут стараться выполнять несколько задач одновременно, в результате чего их эффективность может только снизиться. Например, небольшая компания не в состоянии одновременно расширить продуктовую линейку, повысить степень удовлетворенности покупателей, увеличить выручку и выйти на международный рынок. Это слишком, сотрудники выбьются из сил и будут обречены на провал. Вместо этого стоит сконцентрироваться на менее масштабном, но более целостном наборе целей, задач и KPI, которые будут понятны всем и достижимы.

ЦЕЛИ И ФОРМУЛИРОВКИ КЛЮЧЕВЫХ ПОКАЗАТЕЛЕЙ ЭФФЕКТИВНОСТИ

Если ключевые показатели эффективности должны соответствовать критериям SMART, то они должны быть конкретными и измеряемыми. Это означает, что в их формулировках не должно быть общих, двусмысленных или непонятных глаголов, таких как «улучшить», «повысить», а также таких существительных и прилагательных, как «лучший», «ведущий», «качество». Стейси Барр, специалист по оценке эффективности, называет такие слова «словами-хамелеонами». Вместо этого она рекомендует взять какую-нибудь неясную цель, например «трансформировать результативность наших клиентов», побеседовать с нужными людьми, понять смысл «слов-хамелеонов» и заменить их на более конкретную формулировку, например «когда наши клиенты работают вместе с нами, они способны быстрее достигнуть своих целевых показателей». После этого становится проще определить конкретные, измеримые показатели для достижения этой цели, например «сократить среднее время выполнения плана» или «повысить процент выполненных задач к указанной дате».

Ранее в качестве примера KPI я упоминал «удвоить число активных пользователей к концу года». Это тот случай, когда точные определения чрезвычайно важны.

Понятие «активный пользователь» можно трактовать довольно широко. В онлайновом игровом сообществе это определение может относиться к пользователям, которые просто зарегистрировались за последние 30 дней, или сыграли определенное количество игр, или потратили на игры определенное количество часов. Это определение нужно недвусмысленно уточнить в момент, когда устанавливаются показатели.

Итак, какие KPI можно отнести к хорошим, а какие — к плохим? Мария Микаллеф приводит отличные примеры.

Вот хорошие цели для KPI.

В каждой из этих целей содержатся конкретные числовые показатели (при условии, что концепции «недостающих» и «клиентов» недвусмысленны или четко определены), они измеряемы и ограниченны во времени. Как насчет плохих целей?

Приведем плохие цели для KPI.

Давайте проанализируем эти цели.

В первом случае вопрос очевиден: что значит «лучшей»?

Во втором случае вопрос тоже напрашивается сам собой: как «улучшим»?

А вот третья цель особенно интересна. «Ответим на 75% жалоб» — это весьма конкретно. «В течение пяти дней» — тоже ясно и с ограничением по времени. Фактически, если предположить, что эта цель достижима, то она соответствует всем пяти критериям SMART. Что же тогда не так?

Проблема в оставшихся 25% жалоб. Как быть с ними? Как говорит Мария Микаллеф, «это плохая цель, если на обработку оставшихся 25% жалоб уйдет три месяца». Одна из задач, которую вы должны держать в голове при разработке показателей, — то, что ваши сотрудники не должны осознанно или бессознательно пользоваться подобными «лазейками» в формулировках, чтобы формально выполнять поставленные перед ними задачи, но фактически не способствовать достижению стратегических целей компании. В данном случае негативных отзывов от тех 25% клиентов, на чьи жалобы не отреагируют в течение пяти дней, будет достаточно, чтобы уничтожить репутацию вашей компании.

В этих двух главах мы обсудили ключевые показатели эффективности, которые определяют, чего стремится достигнуть компания и на что обращать внимание для разработки качественных диагностических и операционных показателей (какие аспекты компания собирается отслеживать и оптимизировать). Кроме того, мы поговорили о видах анализа, которые можно применять при работе с этими данными. Следующий шаг в аналитической цепочке ценности заключается в «упаковке» сделанных выводов и рекомендаций, чтобы представить их коллегам, руководству и тем людям, от которых зависит принятие решений. То есть вам необходимо рассказать историю на основе этих данных. Это тема следующей главы.

Назад: Глава 5. Анализ данных
Дальше: Глава 7. Сторителлинг на основе данных