Информация — это новая нефть!
Что для компании означает управление на основе данных? Возможно, вы уже поняли, что ответ на этот вопрос заключается не в обладании новейшими технологиями по работе с большими данными и не в команде блестящих специалистов по аналитике. С ними, несомненно, будет легче, но сама концепция управления на основе данных касается не какой-то конкретной вещи. Скорее, как я уже говорил, она охватывает всю аналитическую цепочку ценности и всю структуру компании. Это отражено на рис. 13.1.
Рис. 13.1. Обзор компонентов, из которых складывается компания с управлением на основе данных
Источник: на основе концепции Уэйна Экерсона, изложенной в его книге Secrets of Analytical Leaders
В и мы обсуждали самый первый слой — сами данные, как собирать правильные данные и как собирать данные правильно. Помимо этого, требуются люди, обладающие нужными навыками, и инструменты. Кроме того, необходимо проводить обучение, чтобы использовать данные максимально эффективно.
Конечно, в первую очередь речь идет об аналитическом подразделении компании, но в компании с управлением на основе данных количество сотрудников, опирающихся в своей работе на данные, выходит далеко за пределы аналитического подразделения.
Как я неоднократно подчеркивал, у меня нет сомнений, что в компании каждый сотрудник вносит свой вклад в общее дело: это совместная ответственность. Основная аналитическая цепочка идет от специалистов по аналитике и их руководителей к руководителям высшего звена, топ-менеджменту компании и совету директоров. Однако в более демократичной с точки зрения работы с данными среде, где, как отметил Кен Рудин, «каждый сотрудник — аналитик», в обязанности всех сотрудников входит, помимо прочего, активное применение доступных данных, инструментов и обучающих программ, чтобы по возможности включать эти данные в свою работу, сообщать о проблемах с качеством данных, генерировать достойные тестирования гипотезы, подвергать сомнениям необоснованные стратегии, мнения и HiPPO и в целом использовать данные с максимальной эффективностью.
Одной из задач этой книги было прямое обращение к специалистам по аналитике и их руководителям. Роль этих сотрудников часто недооценивают. Часто фокус и обсуждение сосредоточивают на изменениях, которые требуется проводить «сверху вниз», когда фактически специалисты по аналитике играют ключевую роль в формировании аналогичной корпоративной культуры с нижних уровней компании. Для этого им нужно действовать более активно и сделать свою роль в компании более заметной.
Эту идею очень удачно выразил Чарльз Томас, директор по данным компании Wells Fargo:
Я называю специалистов по аналитике людьми, которые стимулируют действия: выбирайтесь из своих четырех стен, избавляйтесь от репутации «гиков», демонстрируйте всем свои деловые качества, показывайте, как плоды вашей работы сказываются на всей компании. Вам придется приложить дополнительные усилия, чтобы убедиться, что результаты аналитической работы применяются на всех уровнях компании. Заставьте их работать.
Выходите из своей зоны комфорта и стимулируйте изменения!
Необходимо добиться оптимальной организации аналитического подразделения (). Обычно это осуществляется на основе объединенной, или гибридной, модели, когда аналитики работают в разных бизнес-подразделениях, но при этом есть централизованное аналитическое подразделение, в задачи которого входит обучение сотрудников, поддержка, разработка единых стандартов, и где у специалистов по аналитике определен четкий карьерный путь. Специалисты этого подразделения должны быть сосредоточены на качестве работы, и по крайней мере несколько из них должны заниматься предсказательной аналитикой и аналитикой на более высоком уровне, например разрабатывать прогнозные модели и меры по оптимизации. Они должны продвигать свои аналитические выводы и рекомендации и убеждать в них людей, принимающих решения (следующий уровень на ). В идеале они должны получать оценку своей работы по фактическому влиянию на эффективность деятельности компании.
Продвижение комплексной аналитической программы подразумевает наличие сильного руководства на основе данных. Его может осуществлять, например, вице-президент, отвечающий за аналитическое направление, или директор по данным. В компаниях из рейтинга Fortune 500 эта роль все чаще отводится CDO или CAO (). Фактическое название этой должности не так важно. На практике важно, есть ли у этого человека поддержка руководства и бюджет на реализацию аналитической программы и продвижение корпоративной культуры на основе данных.
В приводится возможный вариант заявления о видении компании в отношении данных. Заявление о видении — это мотивирующее описание того, что компания стремится достичь в среднесрочной и долгосрочной перспективах. В данном случае компания стремится стать более ориентированной на данные в таких аспектах, как навыки работы с данными, повышение общей грамотности в вопросах работы с ними и формирование соответствующей корпоративной культуры. Обсудите этот документ с коллегами? Чего стремитесь достичь вы?
Самый верхний слой, в котором растворяются все остальные, — корпоративная культура, которая формирует все остальные слои и в равной степени сама формируется под их влиянием. Фактически управление на основе данных требует наличия в компании этих компонентов и наиболее эффективных действий на каждом из этих уровней. Например, наличие в компании HiPPO может препятствовать объективному принятию решений на основе фактов. Политические игры и разобщенность данных негативно сказываются на открытости и сотрудничестве в рамках корпоративной культуры.
Многие компании прикладывают серьезные усилия, чтобы развить управление на основе данных. К сожалению, претворять в жизнь любые изменения, а особенно изменения культуры, крайне сложно. Шансы на развитие в компании успешной корпоративной культуры, основанной на данных, обычно выше, если начать заниматься этим как можно раньше, фактически создавая новую культуру, а не меняя ее. Это был один из мотивирующих факторов при написании этой книги. Я надеялся, что молодым компаниям, которые стремятся к управлению на основе данных и у которых еще впереди этап роста и привлечения новых сотрудников, это поможет стать более успешными. По результатам опроса, в котором приняли участие 368 стартапов, 3,26% респондентов заявили, что у них реализовано управление на основе данных: «С самого основания компании данные — часть нашей культуры». По словам еще 44% опрошенных, они «добились значительных улучшений и продолжают работать в направлении развития управления на основе данных». Это можно сравнить с изучением иностранного языка: многие успешно справляются с этой задачей во взрослом возрасте, но в детстве и юности учить иностранный язык бывает легче.
Еще один вопрос, который меня заинтересовал, — имеют ли некоторые онлайн-сервисы предрасположенность к управлению на основе данных, просто потому что они созданы вокруг продукта на основе данных. Возьмем, например, сайт знакомств, такой как OKCupid, рекомендательный сервис в области музыки Pandora или рекомендательный сервис в области контента Prismatic. Обязательно ли в подобных компаниях будет реализовано управление на основе данных в силу того, что их деятельность связана с данными и алгоритмами? Это вероятно, но не обязательно. Вполне возможно, что у таких компаний может быть ключевой продукт на основе данных, который развивается по принципам управления на основе данных, но, например, маркетинговые стратегии или привлечение клиентов подчиняются HiPPO.
Вероятно, здесь может иметь место явление, которое в популяционной генетике носит название «эффект основателя», а в социальных науках — «эффект колеи». Если в команде, которая сформировалась на старте проекта, высокая пропорция технических специалистов и специалистов по работе с данными, которые убеждены в необходимости применения аналитических инструментов и A/B-тестирования, это может повлиять на формирование соответствующей корпоративной культуры и задать тон в том, каких сотрудников компания будет нанимать в дальнейшем. Очевидно одно: в любой компании можно внедрить управление на основе данных. При конкуренции в области аналитики нет ограничений по сфере деятельности.
На протяжении всей книги я намеренно не делал акцента на технологиях. Не потому что это неважно, а потому что, по моему мнению, корпоративная культура в итоге — более весомый фактор. Позвольте объяснить мою точку зрения. Представьте, что в компанию приходит специалист по работе с данными и предлагает новейшие и самые эффективные инструменты (Spark, D3, R, библиотека Scikit-Learn и так далее). Если в корпоративной культуре компании не принято активно работать с данными, например там не проводят А/В-тестирование, а полагаются на мнение и опыт экспертов (HiPPO), работа специалиста по данным вряд ли окажет существенное влияние. Вероятно, он вскоре просто разочаруется и покинет компанию. А теперь представьте обратную ситуацию: в компании развита корпоративная культура на основе данных, но нет необходимых инструментов и технологий. Возможно, в компании ведутся основные реляционные базы данных, но до настоящего момента не возникала потребность в графовой базе данных или в кластере Hadoop. В подобных условиях у специалиста по работе с данными больше шансов получить финансирование и поддержку на разработку или приобретение любых инструментов, которые окажут влияние на эффективность деятельности компании. Иными словами, наличие правильных инструментов способно оказать огромное влияние. Но отсутствие правильной культуры или хотя бы стремления создать правильную культуру сведет на нет все усилия.
ВНИМАНИЕ: ВЗЛЕТ И ПАДЕНИЕ КОМПАНИИ TESCO
Tesco — британская транснациональная корпорация, крупнейшая розничная сеть в Великобритании и крупнейший работодатель в частном секторе (330 тыс. сотрудников). Ее называли эталоном компании с управлением на основе данных, конкурентное преимущество которой определяла ее аналитика.
В 1995 году компания запустила программу лояльности Clubcard. Это позволило аналитикам собрать данные о покупателях и поощрять их, таргетировав купоны. Благодаря более четкому таргетированию уровень погашения купонов вырос с 3 до 70%. А за счет более точного сегментирования целевой аудитории компании удалось разработать и вывести на рынок новые продукты в верхнем ценовом сегменте (Tesco Finest), для тех, кто заботится о здоровье (Tesco Healthy Living), а также для тех, кому важно соотношение «цена/качество» (Tesco Value). В 1999 году объем их рассылки в разных сегментах составил 145 тыс. единиц.
Это был настоящий успех. Рыночная доля компании взлетела почти на 30%, Tesco стала крупнейшей розничной сетью в Великобритании. Сегодня у компании 16 млн активных участников программы лояльности и подробная информация о двух третях всех потребительских корзин. Покупатели получили более 1,5 млрд долл. в виде сэкономленных средств от использования баллов по программе лояльности. Компания выводила на рынок новые продукты специально для привлечения конкретных сегментов аудитории, например молодых родителей, и разрабатывала прогнозные модели, учитывавшие фактор погоды, для оптимизации цепочки поставок, что обеспечило экономию в объеме 150 млн долл. Компания занялась торговлей через интернет, предложив всем клиентам подписаться на программу лояльности Clubcard, и банковским делом. Сегодня Tesco вышла далеко за границы розничной торговли. По словам Майкла Шрейджа, «за исключением Amazon, ни одна глобальная розничная сеть не продемонстрировала более эффективного подхода, ориентированного на данные, касающиеся лояльности потребителей и их поведения».
Аналитическим локомотивом за этим успехом был стартап Dunnhumby, в котором Tesco впоследствии выкупила контрольный пакет акций. Лорд Маклорин, бывший на тот момент председателем совета директоров компании, заявил супружеской чете основателей Dunnhumby: «Меня в этой ситуации пугает то, что спустя три месяца вы узнали о моих покупателях больше, чем я за 30 лет». Dunnhumby назвали «одной из жемчужин в короне Tesco».
Как дела у Tesco сегодня? Ее акции торгуются на самой низкой отметке за последние 11 лет. Компания потеряла 2,7 млрд долл. из-за неудачной попытки выйти на рынок США с сетью Fresh & Easy и объявила об убытке в объеме 9,6 млрд долл. за 2014 налоговый год. Председатель совета директоров с позором покинул свой пост, после того как попытался завысить показатель прибыли на 400 млн долл. Компания сократила почти 9 тыс. рабочих мест и закрыла 43 магазина и их офисы. «С Tesco я допустил огромную ошибку», — признался Уоррен Баффет. Более того, Dunnhumby, чья программа лояльности Clubcard обходится в 750 млн долл. ежегодно (цена, при которой положительная рентабельность крайне маловероятна), выставлена на продажу за 3 млрд долл.
Сложно выделить одну причину этого падения. Высокие показатели прибыли не помогли. Конкуренты разработали собственные программы лояльности, большинство из которых проще, а простота всегда привлекает! Вместо абстрактных «баллов» они предлагают своим клиентам более материальные бонусы, например газету или, что актуально для британцев, чашку чая.
К сожалению, управление на основе данных, и даже качественное управление на основе данных, не гарантирует успеха, а тем более устойчивого успеха. Во-первых, большинство успешных стратегий могут быть скопированы конкурентами, которые не преминут воспользоваться удачным опытом. Во-вторых, у руля компании все-таки стоит топ-менеджмент. И если руководство формулирует неверное видение или стратегию для компании, даже решения, принятые на основе данных и поддерживающие эту стратегию, в итоге приведут к кораблекрушению. История Tesco, которую мы рассказали, — один из подобных примеров.
При этом на протяжении всей книги я приводил результаты разных исследований, свидетельствующие, что управление на основе данных окупается. Компаниям удается принимать решения быстрее и эффективнее и быстрее внедрять инновации. Компании, проводящие больше тестов, не только знают, когда что-то сработало, но и, скорее всего, знают, почему это произошло. Компании отличаются более высоким уровнем открытости, и любой сотрудник может внести свой вклад и увидеть, как это отразится на эффективности компании.